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Preface

This book is about countably infinite groups named for Richard
J. Thompson, and not about finite groups associated to John G. Thomp-
Son.

Thompson’s groups form a loosely defined family of countably in-
finite groups with several attractive features. They are easy to define.
They can be both easy and difficult to work with. They have strange
collections of properties. They are easy to modify and combine with
other groups (and hence the looseness of the Thompson group family).
They are not members of other well studied families of countably infi-
nite groups. They exist for fairly fundamental reasons, and so interact
with a number of other areas of mathematics. It is intended to at least
touch on all of these features in this book.

The book was written to entice the uninterested, and help the in-
terested. The book is heavy on basics and techniques and lighter on
generality. We will give details of key examples, and references for
generalizations.

The number of papers relevant to the Thompson groups is now in
the high hundreds, and limitations on space and my ability make it im-
possible to cover, and probably impossible to even mention them all.
The interactions of the Thompson groups with other areas of mathe-
matics are covered with varying depth, mostly depending on the au-
thor’s familiarity with those areas. However these interactions are an
important aspect of the groups, and some attempt has been made to
cover some and at least mention others.

This book was written to be readable by second year graduate stu-
dents in Ph.D. programs. The accuracy of that sentence will vary
greatly in different parts of the book. The book is intended as a refer-
ence, not as a textbook, and there are no formal exercises. Some work
is left to the reader, and there are suggestions of extra work that can
be done.

There are many people to thank and the list will grow as editions
appear. The list must start with my wife Dawn Coe for infinitely many
reasons, and continue with Jim Belk, Collin Bleak, Alexander Borisov,
Arnaud Brothier, Ross Geoghegan, James Hyde, Yash Lodha, Roger
Maddux, Cary Malkiewich, Marcin Mazur, Conchita Martinez-Pérez,
Enrique Pardo, Richard Thompson, Albert Visser, Eric Wofsey, and
Matt Zaremsky:.
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Special to the first edition

This edition contains three fairly complete chapters and fragments
of others. Chapter 2, a basic introduction to the core groups, is de-
scribed as fairly complete, but is the most likely to see future changes
if material added in later chapters would benefit from adjustments in
the more basic Chapter 2.

What will be added to the incomplete chapters and what new chap-
ters will be added is difficult to determine now. As a first edition, there
is a certain amount of experimentation with the process. Notes at the
end of each chapter will give more information. A footnote at the be-
ginning of each chapter will give a brief statement about the status of
that chapter.

The figure on the title page has nothing whatsoever to do with the
contents of the book and is based on a doodle I used to make in high
school and college.

Matthew Brin
Vestal, New York
2025
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CHAPTER 1

Introduction

'The Thompson groups are countably infinite groups which are al-
most always regarded as discrete groups. Their lack of finiteness is very
much part of their identity. While uncountable groups can show up in
the discussion, they are never referred to as Thompson groups.

In 1969, Thompson introduced three groups F' < T < V which
form the core of the Thompson group family. Surrounding the core
are layers of variations that get increasingly removed from the original
three groups. Eventually groups are encountered that no one would call
Thompson’s groups. In spite of Sigler’s law [184], the phrase “Thomp-
son’s groups” appears to be accurate for several reasons. See the outline
of the early history of the groups in Section 15.

The original groups are easy to define, and we give definitions for
F and T in the next paragraph. There are other definitions, but the
ones we give below were chosen because they are the simplest, the most
direct, and the least revealing.

The group F' is the set of self homeomorphisms of the unit interval
I under composition that

(1) are piecewise linear in that the graph is made of straight line
segments with only finitely many discontinuities of slope,

(2) have slopes between the discontinuities that are integral pow-
ers of 2 (so all elements are orientation preserving), and

(3) have discontinuities of slope confined to the dyadic rationals
Z[1] (those m/2" with both m and n from Z).

The group T' can be defined as those self homeomorphisms of R/Z,
the circle of length one, satisfying (1)—(3) above in addition to

(4) all elements preserve the set Z[3].

Item (4) rules out rotations of the circle by non-dyadics.

Both F' and T are not only finitely generated, but also finitely
presented, and 71" is simple. Before 1969, there were no known examples
of infinite, finitely presented, simple groups.

IThis introduction will change as the book changes.
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2 1. INTRODUCTION

The group V is also finitely presented and simple, and it acts nat-
urally on the Cantor set. A definition for V' along the lines of (1)—(3)
above does exist, but we offer, without details, two alternate defini-
tions. The definitions seem different from each other, but are closely
related.

For the first definition, accept that there is a variety of algebras that
is universal for the property that its free algebra A on one variable has
more than one element and is isomorphic to its free algebra on two
variables. The group V' is the automorphism group of A.

For the second definition, we simply state that V' is the topological
full group of the full one-sided shift on the alphabet {0, 1}. Regarding
elements of the Cantor set as infinite sequences over {0, 1}, the group
V' specifically consists of all self homeomorphisms of the Cantor set
whose germs are compositions of the germs and their inverses of the
self map of the Cantor set that deletes the first entry of each sequence.

More generally, Thompson’s groups arise when self similar struc-
tures arise. The Cantor set is the coproduct of its left half and its right
half, and is structurally identical to each half. Similarly, if the algebra
A of the first definition of V' is free on x and also free on {y, z}, then the
subalgebra generated by y and the subalgebra generated by z are each
isomorphic to A. Now A is the coproduct of these two subalgebras.
The Cantor set and the algebra A are both coproducts of two copies of
themselves, and we use this as an excuse to label as self similar objects
both A and the Cantor set.

Given any object X that is a coproduct (or product) of two copies of
itself, there will be a homomorphic image of V', which must be all of V/
or (rarely) trivial, in the automorphism group of X. This accounts for
many of the properties of the Thompson groups and for many of their
interactions with other areas of mathematics. This also touches on the
claim made in the preface that the groups exist for fairly fundamental
reasons. We discuss other points brought up in the preface.

That the groups are easy to define has already been demonstrated.
That the groups are easy to work with comes from the existence of sev-
eral combinatorial machines that make calculations with the elements
mechanical. In spite of this, there are open questions about the groups,
and some questions that have been closed were closed with difficulty.

The most famous open question is whether F' is amenable. Also
unknown is whether F' is automatic in the sense of [69].

False solutions (in both directions) for the first question were com-
mon for a period, but have abated. The group F has sat comfortably on
the fence of the question with F' satisfying most known consequences of
amenability, and not satisfying most properties known to be stronger
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than amenability. It has been facetiously(?) suggested that the ques-
tion is independent of ZFC.

The second question gets less attention. But some work has been
done which exhibits how difficult F' can be to work with. A condition
necessary to having an automatic structure is to have a quadratic Dehn
function. That this holds for F' is shown in [98] with an intricate calcu-
lation. This followed a sequence of results showing first that the Dehn
fuction is exponentially bounded, then subexponentially bounded, and
then bounded by a polynomial of degree 5.

Most prominent of properties of the Thompson family is that its
members tend to be simple and finitely presented while infinite. Fur-
ther they enter into marriages with entire families of groups so as to
embed those groups into finitely presented simple groups. As groups
with calculational tools, they have solvable word problems, but some
have unsolvable conjugacy problems, and some have unsolvable first or-
der theories. An early discovery (1984 [36]) is that they supply the first
examples of torsion free groups GG admitting projective ZG-resolutions
finitely generated in each dimension, but having infinite cohomologi-
cal dimension. It is now almost expected that each addition to the
Thompson group family be proven to share this property.

A property of I’ that characterizes the group is that it is an ini-
tial object in the category of groups admitting an endomorphism that
differs from its square, but only by an inner automorphism (is a con-
jugacy idempotent). This led to independent discoveries of F' by two
teams in the late 1970s. In fact, some of the Thompson groups were
discovered independently after Thompson at least four times over three
decades. It could be said that mathematics had become ready for their
discovery.

The conjugacy idempotent property arose because of a question in
homotopy theory. Thompson himself came upon the groups because of
his interest in algebraic logic. An interest in algebraic laws led to one
of the later rediscoveries of F', where it was established that, in some
sense, F' could be described as the structure group of the associative
law.

The definitions given above for the groups are dominated by the
integer 2. Changing this to an arbitrary positive integer n gives rise
to an infinite family of groups having similar properties. But more can
be done, and a small sample is in Chapter 6 of this edition. The fact
that V acts on the Cantor set allows marriages with other groups. As
naive as it seems, it can be profitable to take another group G acting
faithfully on the Cantor set and look at the group generated by V' and
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G together. Under the right conditions the result is a finitely presented,
simple group that contains G as a subgroup.

The definitions of V' given above connect V' to dynamical systems,
and to objects having a self similar structure. The connection of V' to
algebraic structures exhibiting ambiguity of free rank has been useful to
the Thompson family since this has given the first (and at the moment
only) classification up to isomorphism of certain variations of the group
V.

Strangely, the group F' parametrizes (seemingly without useful con-
sequences) that part of planar graph theory that contains the difficult
core of the four color theorem. Sparking more interest is the parallel
fact that [’ parametrizes all knots and links.

To position the Thompson groups in the landscape of countably in-
finite (or finitely generated, or finitely presented) groups would require
a map of that landscape. While it is nonsense to try to make such a
map, we will make an attempt by placing groups of rigid actions such
as isometry groups to the left, and groups that act more flexibly such
as homeomorphism groups to the right. In between one might put lin-
ear groups, Artin groups, mapping class groups, and the vast family of
hyperbolic groups in places that one finds comfortable. The Thompson
groups, being none of the above for various reasons, hang somewhere
in the middle while reaching out to both ends. They exhibit almost
the flexibility of the homeomorphism groups which accounts for their
tendency to be simple, but in a very controlled way which accounts for
their finiteness properties.

The book will attempt to lay all this out. The invitation to learn
about Thompson’s groups comes with the remark that groups con-
stantly connect to other topics, and the study of the groups is not an
insular study.

Most of the actual work in this book can best be described as el-
ementary. Another word might be traditional, and a stronger term
might be old fashioned. Given that the Thompson groups exist for
fundamental reasons, they show up in areas both old and new. There
are only minor indications of the newer apperances in this book. Limits
of time, space and the knowledge of the author contribute to that. Ex-
perts in some of the areas touched on in the book will find the narrative
quite unsophisticated.

As of this edition, the structure of the book is as follows. Chapter 2
covers the basics of F', T and V. This includes the various definitions,
some presentations, the tools for calculation and the properties that are
the most basic. The mathematical origins of the groups are covered in
Chapter 3. As a bit of indulgence, that chapter starts with a history
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of the early literature of the groups. The author finds the flow and
exchange of ideas in this period interesting. Chapter 4 (at the moment
not complete) builds complexes that the groups act on. This connects
to the history and to the finiteness properties. Chapter 5 has first
order results, including the unsolvability of the first order theory of
F and T, and also a proof that the algebra of most of these groups
determines spaces that they act on and their actions. Chapter 6 (very
incomplete) discusses the variants and marriages that take place among
the Thompson groups. Chapter 7 (very incomplete) contains enough
of the representation of some Thompson groups into rank ambiguous
algebraic structures to allow for the classification of some variants of
the group V. Chapter 8 (hardly begun) contains a derivation of the
length function for F' as a start for geometric discussions of the groups.

There is also an appendix (Chapter 9) containing a few techniques
whose development is independent of that of the Thompson groups,
which are needed for a discussion of Thompson groups, and which
might be unfamiliar to some readers.

Very much missing is material on isomorphisms, on conjugacy, on
subgroups (a large topic), and most connections to other parts of math-
ematics.
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1. Introduction

'We define the groups F, T and V and derive some of their basic
properties. By basic properties we mean those whose derivations rea-
sonably fit into a single chapter. However, we also include topics that
let us talk about the content of later chapters.

The letters F', T and V' have been rather stable since the 1996 ex-
pository paper of Cannon-Floyd-Parry [43]. However, the letter G is
used occasionally for 7" and more frequently for V. Notations used
before 1996 are given in [43]. The letter F' was first used in the 1979
preprint of Freyd-Heller 1993 [73] to abbreviate “Free homotopy idem-
potent.” The releveance of this phrase and the history around it will
be explained in the introduction to Chapter 3 and in Section 19 of
that chapter. The letter 7" was used in Brown 1987 [34] in honor of
Thompson. The letter V' (with an additional tilde) was used in widely
circulated notes that were handwritten by Thompson shortly after the
1973 appearance of his paper [189].

Most of this chapter deals with F' since once the mechanics of F' are
laid out, discussing T" and V' becomes much easier. The group F' can be
exhibited as a group of homeomorphisms, a group of manipulations of
combinatorial objects, or as specified by a presentation. This chapter
follows that order starting with homeomorphisms, then extracting the
combinatorial views, and lastly using the combinatorial information to
extract two presentations. During this development, properties of the
group are derived when it is possible to do so.

The brief Section 2 sets notation and conventions, and Section 3
gives our chosen definition of F'.

Sections 4 and 5 derive properties from the structure as a group of
homeomorphisms. We show that F'is torsion free, locally indicable and
bi-orderable. Direct sums and wreath products abound as subgroups,
the center is trivial, and non-abelian subgroups cannot be free and
cannot be nilpotent. The commutator subgroup is contained in every
non-trivial normal subgroup of F', is simple, is not finitely generated,
and every element of the commutator subgroup is a product of no more
than two commutators. The free semigroup on two generators embeds
in F' and so the growth of F' is exponential.

Sections 6 through 8 develop three combinatorial approaches to F'.
These make calculations with elements of the group mechanical, they
each have their advantages, and they are used heavily in the literature.
Much of the work in these sections is to show the equivalence of the

IThis chapter is reasonably complete. As a foundation for the chapters that
follow, changes may be made to this chapter as other chapters develop.
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views and how to pass from one to another. None of this is complicated,
but it makes for a lot of material. Section 9 continues the combinatorial
theme and derives a finite presentation as well as a convenient infinite
presentation.

Diagram groups form an interesting class of groups and the dia-
grams of the name give a combinatorial tool for working with them.
Some but not all diagram groups are Thompson groups, and many
(including F' as a prime example) but not all Thompson groups are
diagram groups. We will not cover diagram groups. See the end notes
(Section 14) for more information.

Section 10 gives properties of F' that arise from the combinatorics.
Elements of the commutator subgroup are characterized, and the struc-
ture of F' as an iterated HNN extension of nothing is proven. It is shown
that F' is universal for the property of having an endomorphism that
differs from its square by an inner automorphism, and that this uni-
versality characterizes F'. In Chapter 3 it is shown how this led to one
of the discoveries of F'.

Section 11 looks at an important submonoid F, of F. The proper-
ties of the monoid lie behind many of the complexes used for further
analysis of F'. One of the themes of the current chapter is a search for
distinguished representatives and normal forms for elements of F'. The
monoid F; ties these forms together.

Sections 12 and 13 are about 7" and V, respectively. Both can be
described by modifying a definition of F’ and we do this for T". However,
we introduce V' differently to show its inevitable appearance in certain
basic dynamical systems. In Chapter 3 this is generalized to situations
involving self similar objects. About 7" we prove that all finite sub-
groups are cyclic, that there are non-abelian free subgroups, and that
T is finitely presentable and simple. We show that in the standard
representation of T" as a group of homeomorphisms on the circle, every
rational in [0, 1) appears as a rotation number of an element of 7. We
exhibit V' as the topological full group of the full one-sided shift on two
letters. We show that V' is finitely generated and simple, and that every
countable, locally finite group embeds in V. The finite presentability
of V' requires more work than for F and T, and we delay the proof
until Chapter 4 where we discuss complexes on which the groups act.

Section 14 gives some final notes on the material in this chapter
and in chapters that follow.
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2. Preliminaries

2.1. Some notation. We use R, Q, Z, N for, respectively, the
reals, the rationals, the integers and the natural numbers (which in-
clude zero). We use S! for the circle R/Z of length one, Rs( for the
non-negative reals, and I for the unit interval [0, 1]. We use w for the
first infinite ordinal. It has the same underlying set as N, but w em-
phasizes order and N emphasizes arithmetic. The subring Z[%} of R
consists of the dyadic rationals, those m /2" with m and n in Z.

We will use |S| for the cardinality of a set S.

2.2. Groups and actions. In this book, groups will act on the
right, and actions will be composed left-to-right. Any exceptions to
this will be announced loudly. So if G acts on X with g and h in G and
x € X, then the images of z under g and gh are xg and xgh = (zg)h,
respectively. The fiz set or fized set Fix(g) of g is {x € X | xg = x}
and the more frequently referred to support Supp(g) of g is {z € X |
xrg # x}. We also have

Fix(G)={x € X |Vge G, zg =1} = ﬂ Fix(g), and

geG

Supp(G) = {z € X | 3g € G, zg # x} = | J Supp(g).

geG

An action of G on X is free if for all 1 # g € G, we have Fix(g) = (.

For S C G, we write (S) for the subgroup of G generated by S.
We write H < G to indicate that H is a subgroup of G. For z € X,
the orbit of x under G is the set {zg | ¢ € G} and is written zG. For
g € G, the orbit of z under g is z(g) and is the set {xg’ | i € Z}. For
the next comment, we refer to (xg’, zg""!) as a consecutive pair in the
orbit of x under g.

We write g for h=gh. The “fundamental triviality” (terminology
of [85], p. 11) observes that the calculation (zh)g" = (zh)h~'gh =
(xg)h shows that h carries the consecutive pair (z,xg) in the orbit of x
under g to the consecutive pair (z,xg)h = (zh, (zg)h) = (xh, (zh)g")
in the orbit of zh under g". From this we get Fix(¢") = (Fix(g))h,
and Supp(¢") = (Supp(g))h. For us, the commutator [f,g] of f and
g is f7'g71fg, and we will often make use of the fact that [f,g] =
(gH) g = f~1f9 is in the normal closure of both f and g.

In what follows, there will be functions that are not actions and
there will be functions that will later be part of an action of a group
that has not yet been established. It will often be convenient to put
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such functions to the right of their arguments and compose left-to-right.
We will point out when this occurs.

2.3. Some homeomorphism groups. We will use Homeo(X)
for the group of self homeomorphisms of a topological space X. This
will be most often used when X is one of R, I, S, Rsq or the Cantor
set €. The first four are orientable and for an orientable X, we use
Homeo, (X) for the index two subgroup of Homeo(X) consisting of the
orientation preserving self homeomorphisms of X.

We will work with piecewise linear homeomorphisms. For X equal
to one of R, Rxg, I or S*, a homeomorphism f is piecewise linear if
there is a set of points B, discrete in X, consisting exactly of those
points where the derivative f’ of f does not exist so that on each
component of X \ B the derivative [’ is constant. The points in B are
called the breakpoints of f. If a piecewise linear f is defined on some
[a, b], then af’ will denote the right hand derivative of f at a and bf”
will denote the left hand derivative of f at b.

We will use PL(X) for the group of all piecewise linear self home-
omorphisms of X for the usual spaces X, and PL,(X) for the index
two subgroup of those elements of PL(X) that preserve orientation.

The phrase “piecewise linear” not really accurate and “piecewise
affine” is closer to the truth. To say that a function f is affine on an
interval J means that there are m and b so that tf = mt + b for all
teJ.

Note that an f in PL(R) or PL,(R) can have infinitely many
breakpoints. We use PLF(R) and PLF,(R) for the subgroups of
PL(R) and PL,(R), respectively, consisting of those elements with
only finitely many breakpoints. A useful subgroup of PLF(R) is
BPL(R) consisting of those elements in PL(R) of bounded support.

3. The group F, I: definition

We repeat the definition from the introduction using vocabulary
from Section 2. This definition is the quickest to state, and as noted in
the introduction, the definition gives a certain dramatic impact since
some of the claimed properties then seem surprising. The definition
drives all observations that we make about F' through Section 5. How-
ever, most of what is known about the group comes from a more com-
binatorial view of the group, and starting in Section 6, we derive the
equivalent and more frequently used, combinatorial defintions.

DEFINITION 3.1. The group F' consists of those self homeomor-
phisms of the unit interval I that
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(1) are piecewise linear,

(2) have only slopes that are integral powers of 2 (making all slopes
positive and all elements orientation preserving), and

(3) have breakpoints confined to Z[3].

The group operation is composition and action is on the right.

It is clear from the definition that F'is countably infinite, and from
the lemma below that F' is closed under composition and inverse and
is thus a group.

LEMMA 3.2. Each element of F carries Z[3] N I into itself.

PROOF. For h € F and t € Z[5] N I, induct on the number of
breakpoints of A in the interval [0,¢]. Details are left to the reader [

What is not clear from Definition 3.1 is that F' is not only finitely
generated, but in fact finitely presented. We will show in Section 9
that the following two elements generate F'. The notation xy and
for these elements is common.

t, telo,d],
2t7 tE[O,}l], 1 [1 ?’)]
_ 1 11 _ 2t—§’ t6[5,§],
tl’g— t-‘-z, tE[Z’i]’ tl‘l— t+l t€[§ §]
t+1)/2, teli 1], 8’ 8747

(t+ 172 telzll (t+1)/2 teld 1],

The graphs of xy and x; are shown below.

R

o0 o

We will also show in Section 9 that a finite presentation for F' using
the elements above is

(3:2) (o, 21 | w5y g, 1] = [y Mg ” 1] = 1),

3.1. Describing elements. To work with elements, we need to
describe them.

DEFINITION 3.3. Let J = [a,b] be a closed interval with non-
empty interior and let a = pg < p1 < po < ---p, = b be a fi-
nite set of points £ in J. The set F divides J into the subintervals
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(Do, p1ls [P1, P2, - - s [Pn—1, Pn], and we call this collection of intervals the
partition of J with endpoints E. If P is a partition of J with endpoints
E, we set e(P) = E. If P and @ with |P| = |Q] are two partitions of a
closed interval J, then we call (P, Q) a partition pair. For such a pair,
the order preserving bijection from e(P) to e((Q)) extends to a unique,
orientation preserving, piecewise linear homeomorphism A from J to
itself whose breakpoints are contained in e(P). We say that the pair
(P, Q) determines h.

REMARK 3.4 (Anticipating the future). The order preserving bijec-
tion from e(P) to e(Q) induces an order preserving bijection from P to
@ where for intervals K and L with disjoint interiors, we say K < L
if s <t for some s in the interior of K and t in the interior of L. If P
and () are partitions of I, then knowing the order preserving bijection
from P to @ is enough to define an order preserving self homeomor-
phism of . When we get to the groups 17" and V', the order preserving
bijection from P to ) will be replaced by more general bijections, and
it pays to get used to the practice of using the word “pair” to refer to
a triple (P, 0, Q) where P and () are sets of equal finite cardinality and
o is some bijection from P to (). For F, the bijection is always order
preserving (whatever the structues of P and ) and will be suppressed
from the notation.

3.2. The multiplication. Calculating compositions in PL, ()
can be best described as opportunistic. Compose in the obvious way
when there is an obvious way to compose, and otherwise change things
so that it becomes obvious. This theme will be repeated often.

Let f and g in F' be determined, respectively, by partition pairs
(P, Q) and (R, S). We assume that all of the endpoints of P, @), R, and
S are in Z[3]. If by coincidence @ = R, then we can take advantage of
that coincidence and declare that fg (remember the left-to-right order
of composition) is determined by (P, S).

If the coincidence () = R does not occur, then we arrange it to
do so. Set E = ¢e(Q) Ue(R), let T be the partition with e(T) = E,
let P’ be the partition with e(P’) = Ef~!, and let S’ be the partition
with e(S”) = Eg. Now f and g are determined, respectively, by (P, T')
and (7,5") and fg is determined by (P’,S’). The computations of P’
and S are straightforward given the affine nature of f and g on the
intervals between the points of P and R.

The rectangle diagramsin [13, 43, 14] (attributed to William Thurston)
comprise one set of visual tools for working with elements of F'. If f is
determined by (P, ), then we can draw a rectangle with the top and
bottom edges each representing the unit interval, with the endpoints
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of P marked out in proportional position on the top edge and of () on
the bottom edge. Then for each p; € e(P), a straight line is drawn
from p; on the top edge to p;f € e(Q) on the bottom edge. Rectangle
diagrams for g and x; are shown below.

1 1 1 5 3

4 2 2 8 4
1 3 1 3 7
2 4 2 4 8

Multiplication is accomplished by stacking rectangle diagrams ver-
tically and, if necessary, making additions to the partitions and adding
a straight line from the top edge to the bottom edge for each addition.
The calculation of xgx; is shown below where the extra line in the rec-

tangle for (o made necessary by the breakpoint at g of x; is shown as
dashed.

13 1
4 8 2
\
Zo \
\
1 3.7
2 4 8

The reader might calculate x3 using rectangle diagrams, and further
verify the two relations in the presentation (3.2).

3.3. Normal and seminormal forms. Every element of I’ can
be represented by a partition pair, but many partition pairs can rep-
resent the same element of F'. This makes partition pairs seminormal
forms rather than normal forms. However, a partition pair (P, Q) rep-
resents the identity element of F' if and only if P = (). A seminormal
form that can pick out the identity is still a useful object. In particular,
if generators for F' are known, then the algorithm for multiplication of
Section 3.2 makes the word problem for F' solvable. This will be stated
formally as Proposition 11.11.

Because we will introduce several ways to represent F', there will
be several forms for elements. They all start out as seminormal forms
that can pick out the identity element. Eventually, we will pick out
a distinguished representative for each element of F', and have a true
normal form.
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4. Properties, I: from the definition

This section gives properties that have little to do with F' other
than the fact that F' is a subgroup of Homeo, (I) and of PL,(I). We
need some key notions.

4.1. Orbitals. The order structure of R cooperates with the con-
cepts of support and orbit. The proof of the lemma below is left to the
reader.

DEFINITION 4.1. If H be a subgroup of Homeo, (R), then an orbital
of H is a component of supp(H). If f € Homeo, (R), then an orbital
of f is an orbital of (f).

LEMMA 4.2. If H < Homeo, (R) and t € R is in supp(H), then
the orbital of H that contains t is the convex hull of the orbit tH.

Not every orbital of an element of F' needs to have dyadic endpoints.
Non-dyadic, isolated fixed points can occur. The lemma below is an
easy observation whose proof is left to the reader. If p = ™ € (0,1) is
a rational expressed in reduced terms with n > 0, then we can write
n = 2i¢ where ¢ is odd. Let k be the smallest positive integer so that
c[(2¥ — 1). That such a k exists follows from Euler’s generalization of
Fermat’s little theorem ([59, Theorem 13] or [167, Theorem 2.8]).

LEMMA 4.3. Let p be in (0,1).

(1) Ifp is a non-dyadic rational, let k be as chosen in the paragraph
above. There are then elements of F' that are fixed on p but on
no neighborhood of p, and futher for any such element f, the
slope of f on a neighborhood of p is an integral power of 2*.

(2) If p is irrational and a fized point of f € F, then f is the
wdentity on an open neighborhood of p.

For example, % can be an isolated fixed point of an element of F,
but the slope of such an element will have to be an integral power of 4
since k = 2 is the least k for which 3|(2¥ — 1). For 1, k = 4, and for 2,

k = 3, and so on. For }D with p a prime, k is always a divisor of p — 1.

4.2. Wreath products. In groups of homeomorphisms, wreath
products and iterated wreath products abound. One reason for point-
ing this out is that wreath products have non-cyclic abelian subgroups
and thus cannot be subgroups of free groups. We give definitions.

DEFINITION 4.4. If G and H are groups and H acts on a set X
on the right, then the (restricted) wreath product G H (the notation
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neglects ingredients) is the semidirect product

(Z G) x H
zeX

where the sum XG on the left of copies of G can be thought of as those
functions f from X to G for which only finitely many f(z) are not the
identity in G, and where (fg)z = f(z)g(z). Then for h € H, we have
fM(z) = (h71fh)(z) := f(xh™'). Elements of G H can be written as
fh with (f,h) € ¥G x H and multiplication done as (f1h1)(fahe) =

fih f2hf1h1h2 = fi f2h 1 1h1h2. The unrestricted wreath product would
replace the sum of copies of G' by the Cartesian product of copies of
G. In the case that H is acting on itself by right multiplication, then
the wreath products (restricted and unrestricted) are called standard.

The paper [160], some of whose left-right conventions differ from
ours, is the standard reference on standard wreath products.

DEFINITION 4.5. In the case that (G is also acting on a set Y on the
right, then there is a natural right action of G? H on Y x X. In this
case, the resulting group and its action are referred to as a permutation
wreath product and the action is defined as follows. Using the letters
already established and with (y,z) € Y x X, we have (y,z)(fh) =
(yf(x),zh). The reader can check that this gives a consistent right
action.

4.2.1. Realization. We will rarely have occasion to refer to the de-
tails of the definition of the wreath product. The following illustrates
how wreath products will arise, how they can be iterated, and gives
a hint to the associativity of the permutation wreath product. The
reader can come up with easy examples using finite groups that show
that the standard wreath product is not associative.

DEFINITION 4.6. Let H be a group acting on a set A on the right,
let B be a subset of A, and let X = {Bh | h € H}. Note that H also
acts on X. We say that the action of H on X is consistent to mean
that for all h € H if BhN B # (), then h fixes B pointwise. We say
that the action of H on X is faithful to mean that the only element of
H that fixes all elements of X is the identity of H.

The following lemma allows us to recognize wreath products when
they occur without referring to the details of Definitions 4.4 and 4.5.
The proof is left to the reader.

LEMMA 4.7. Suppose that G and H act on a set A on the right.
Assume there are subsets C' C supp(G) € B C A such that the action
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of GonY ={Cyqg| g€ G} and the action of H on X ={Bh | h € H}
are both consistent and faithful. Then the action of W = (G, H) on
Z ={Cw | w e W} is also consistent and faithful and is isomorphic
to the action of the permutation wreath product GV H on'Y x X.

4.2.2. FExistence. The basic lemma is the following. The proof is
left to the reader.

LEMMA 4.8. Let h € H < Homeo(R) be given with the closure of
supp(h) a compact subset of an orbital of H. Then there is an f € H
with {(h, f) isomorphic to (h) ! (f) the standard wreath product ZZ.
In particular H contains a subgroup isomorphic to the direct sum of
countably many copies of Zi and H is not free.

4.3. The shrinking commutator. The following drives results
in Sections 4.5, 4.6, and 5.5.

LEMMA 4.9. If f and g are in PL(R) then the following hold.

(1) If f and g have a common fized point t, then [f,g] is fized on
an open neighborhood of t.

(2) If f and g are in PLF(R), then [f, g] has slope 1 outside of a
compact set.

(3) If f and g both have slope 1 outside of a compact set, then the

closure of supp([f, g]) is a compact subset of supp(f)Usupp(g).

PROOF. The first two statements follow from the chain rule. The
third follows from the commutativity of translations, from the first
statement, and from the fact that supp(f)Usupp(g) = supp((f, g)). O

4.4. Absence of torsion. For an f € Homeo, (R), the proof of
the following breaks into two symmetric cases depending on whether
one starts with ¢t € R where tf >t or tf < t. Details are left to the
reader.

LEMMA 4.10. The only element of finite order in Homeo,(R) is
the identity.

4.5. Absence of free subgroups. That there are no non-abelian
free subgroups in the groups we work with should follow immediately
from Lemma 4.8 which guarantees wreath products in very general
situations. The catch is that Lemma 4.8 assumes an h with support in
one orbital of the ambient group. A certain amount of work with the
Thompson groups revolves around cleaning up conflicts among multiple
orbitals. This is an early example. The assumption that there be only
finitely many breakpoints is necessary. See Corollary 12.14.1.
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THEOREM 4.11. There is no subgroup of PLF(R) isomorphic to
the free group of rank 2 and thus no subgroup of either PLy(I) or F is
isomorphic to the free group of rank 2. In particular, the following
dichotomies hold. A subgroup of PLF(R) is either metabelian or
contains a subgroup ismorphic to ZU1Z. A subgroup of PL, (I) is either
abelian or contains a subgroup isomorphic to Z 7.

PRrOOF. Let PLF;(R) be the subgroup of PLF, (R) consisting of
all elements that have slope 1 outside of a compact set. By Lemma
4.9, the commutator subgroup PLF" (R) of PLF, (R) is contained in
PLFi(R). Since F < PL,(I) < PLF;(R), the claims all follow if we
show that a non-abelian subgroup of PLF;(R) contains a subgroup
isomorphic to Z Z.

We assume that there are elements f and g of PLF;(R) that do not
commute. As elements of PLF, (R), all of f, g and H = (f, g) have
finitely many orbitals. By Lemma 4.9 the closure of supp([f,¢]) is a
compact subset of supp(H ). Thus the set of elements in H whose clo-
sure of support is a compact subset of supp(H) is not empty. Let w be
a non-trivial element of H so that the closure of supp(w) is a compact
subset of supp(H) and intersects non-trivally the smallest number of
orbitals of H. Let J be an orbital of H that contains points in supp(w)
and let H; consist of the restriction to J of the elements of H.

By Lemma 4.8, there is an = € H with (wl|;,z|;) ~ (w|;) ¢ (z|;)
the wreath product Z{Z. Sending each h € H to h|; is a surjective
homomorphism ¢ from H to H;. If the restriction of ¢ to G = (w, z)
has trivial kernel, then G is the subgroup of H that we seek. So we
assume some non-identity y € (w, z) in the kernel of ¢.

The abelianization of (w|;,z|;) ~ ZU1Z is Z X Z generated by
the images in the abelianization of w|; and z|;. It follows that the
exponent sum of each of w and z in y is zero. Moving appearances of
w and z that are not in commutators to the right end of y leaves behind
nothing but commutators, putting y in the commutator subgroup of
(w,z). Once again Lemma 4.9 has the closure of supp(y) a compact
subset of supp(H). But commutators of w and = can only have support
in orbitals of H that also contain points of supp(w). So the support
of y, which misses J, lies in fewer orbitals of H than the support of w.
This contradicts our choice of w. U

4.6. Nilpotent implies abelian.

PROPOSITION 4.12. Let H be a nilpotent subgroup of PLF(R).
Then H is abelian.
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ProoF. We assume that H is nilpotent and not abelian. Thus in
the lower central series,

H=Hy>H 2Hy,D>---2H, 2 H, 2 H,={l}

we know that H; = [H, H] is not the trivial subgroup and we know
that for every h € H, 1 C Hy = [H,H] and w € H that [w,h] = 1.
Thus we are done if we show that for every non-trivial element A of
H, = [H, H] there is an element w of H for which [w, h] is non-trivial.

Take 1 # h € [H, H] and let I be an orbital of H containing a
non-fixed point of h. If I is bounded to the left, then let a be the left
endpoint of /. By Lemma 4.9, the support of h in I is bounded away
from a. Let b be the left endpoint in I of the support of h in I. We
have b # a and b € I. There is an element w € H for which bw # b.
Thus the conjugate of h by w will have support in I different from that
of h and we have that h and w do not commute.

Assume that I is not bounded to the left. The argument of the
previous paragraph finishes the argument if the support of h is bounded
to the left, so we assume that it is not. Since h is the product of finitely
many commutators, Lemma 4.9 says that h must be a translation by
some s near —oo. We have s # 0 since the support of A is not bounded
on the left. If all elements of H were translations near —oo, then
h would be the identity near —oo. Thus some w € H behaves as
x — )\ + k near —oo with A\ # 1. The action of w™! near —oo is as
x+— xA"! — kA7 and the action of w™'hw near —oo is as

z (AT AT s A th=2—k+sA+k =12+ s\

Since A # 1 and s # 0, this is not the behavior of h near —oo and
[w, h] # 1. O

Theorem 4.5 of Plante-Thurston 1976 [169] proves the above for
C? homeomorphisms of Rsq. From Proposition 9.11 below, there is a
smooth action of F' on R giving another argument for Proposition
4.12.

There are non-abelian nilpotent subgroups of PL,(R) of every
nilpotency class. Let s be the shift map xs = = + 1 and let f be
any non-identity element of PL, (R) with support in (0,1). For i € Z,
let f; = (f)*". Let ¢ : Z — Z be any function and let f, be the product
over all 1 € Z of ff)(i). This product makes sense and gives an element of
PL,(R) since the supports of the f; are pairwise disjoint. The reader
can show that judicious choices of ¢ can make G = (s, f) nilpotent
of any desired nilpotency class. Note that G, will be isomorphic to a
subgroup of the unrestricted wreath product of Z by Z.
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4.7. Local indicability and order. There is much written about
ordered groups. Here we introduce a bare minimum and start with the
relevant definitions.

DEFINITION 4.13. If < is a total order on a group G, it is called
a left order (or a left invariant order) if for all a, b and ¢ in G with
a < b, we have ca < cb. It is called a right order (or right invariant
order) if instead one can conclude ac < be. If both conclusions hold,
then the order is a bi-order (or bi-invariant order). A group is locally
indicable if every finitely generated subgroup has a homomorphism to
Z with non-trivial image.

Note that true statements about groups with a left order can be
turned into true statements about groups with a right order and vice-
versa by exchanging the words left and right.

In a group G with a total order <, an element x is positive if x > 1.
If the order is any of left, right or bi-invariant, then P = {x | z > 1}
is closed under multiplication, and for every 1 # y € G exactly one
of y € Pory ! € P will be true. If the order is a bi-order, then P
is closed under conjugation by arbitrary elements of G. We have the
following.

LEMMA 4.14. Let a group G be the disjoint union G_ U {1} U G4
where G is a semigroup invariant under conjugation in G and G_ is
the set of inverses of G. Then setting f < g if and only if gf ' € G .
gies a bi-order on G.

ProoOF. Trichotomy follows directly from the definition. For tran-
sitivity we have gf ™' € G, and hg™! € G, gives hg lgf ' = hf! €
G, so we have a total order. Now if gf~' € G then gh(fh)™! =
gf ' e Gy and hg(hf)™' = (gf ") € G, as required by the defini-
tion. U

A left order is Conradian if for all positive f and g, there is an
n € N so that fg" > g.

We have a set of implications. A bi-order is Conradian. This is
immediate since f > 1 implies fg > g, and so n = 1 works in the
definition of Conradian. A group has a Conradian order if and only if
it is locally indicable. See for example Propositions 3.11 and 3.16 in
Navas 2010 [158]. As a consequence, a locally indicable group has a
left order. A countable group has a left order if and only if it admits
a faithful left action on R. See for example Theorem 6.8 of Ghys 2001
81].

There are no converses to the two implications above not given as
equivalences. It is straightforward to show that if G and H are locally
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indicable, then so is an extension of G by H. Thus G = BS(1,—1) =
(a,b | a~'ba = b7') as a semidirect product of Z and Z is locally
indicable. But G cannot admit a bi-order since b and b~! are conjugate.
Bergman 1991 [10] has a right orderable but non locally indicable group.

Every subgroup of BPL(R) has a bi-order and is thus locally indi-
cable. But in the setting of BPL(R) it is so easy to show both that
we shall do so directly.

ProposITION 4.15. If G < BPL(R), then G has a bi-order and is
locally indicable.

Proor. We use Lemma 4.14. We let Gy consist of those h € G
so that if ¢ = inf(supp(h)), then there is an ¢ > 0 so that for all
s € (t,t + €) we have sh > s. Letting G_ be the set of inverses of the
elements of G gives all the right properties.

For local indicability, we assume (' is finitely generated and thus
has bounded support. Let ¢t = inf(supp(G)). For h € G, let ¢(h) =
log(th! ) where th/_is the right hand derivative of h at t. This is a
homomorphism to (R, +) that is not the trivial homomorphism since
G is finitely generated. The image is a finitely generated, torsion free
abelian group and is the direct sum of a finite number of copies of
Z. Composing ¢ by a projection to one of the summands satisfies the
definition of local indicability. O

5. Properties, II: from transitivity

The action of F' has strong transitivity properties, and many of the
results about F' are based on these properties.

5.1. The transitivity lemmas. We look at the level of transi-
tivity of F. It turns out to be useful to work with points outside of
the unit interval I even when discussing the action of F' on I. So our
statements of transitivity will cover more than the unit interval.

DEFINITION 5.1. If a group G acts on a linearly ordered set L by
order preserving bijections, then we say that the action is order n-
transitive or o-n-transitive if for every pair of subsets A and B of L
with |A| = |B| = n, there is an element g € G with Ag = B. When
n = 1, this is simply a definition of transitive.

To be more precise about where we can find elements in the next
lemma, we define BPLy(R) to be the subgroup BPL(R) consisting of
those elements that are F-like in that their slopes are integral powers of
2, that have their breakpoints are in Z[1], and that take Z[1] to itself.
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This will be shown in Corollary 10.1.1 to be the commutator subgroup
of an isomorphic copy of F' acting on R.

LEMMA 5.2. The action of BPLy(R) on Z[3] is o-n-transitive for
every positive integer n. Specifically, if A and B are finite subsets of
Z[3] of the same size and there are p < q in Z[3] with AU B C (p,q),

2
then there is an f € BPLy(R) taking A onto B that is the identity off

(p,q)-

PROOF. Let A, B, p and ¢ be as in the statement. By increasing p
and decreasing ¢ slightly, we can assume both are in Z[%]

We let {a; | 0 < i < n+ 1} be the elements of AU {p,q} indexed
in increasing order. This puts ay = p and a, .1 = ¢. Similarly we let
{b; | 0 <i < n+ 1} be the elements of B U {p,q} putting by = p and
bny1 = ¢

We express each element of AU{p, ¢} as a fraction in reduced terms
and let k£ be the largest exponent of 2 found in a denominator over all
the elements of AU {p, q}. We choose [ similarly for B U {p, ¢}.

We now replace A by A’ which consists of all integer multiples of
2% in the closed interval [p,q] and we let {a} | 0 < i < M} be the
elements of A’ indexed in increasing order in [p, ¢]. Similarly, we replace
B by B’ consisting of all integer multiples of 27! in [p, ¢] and we let
{b, ] 0 <i < N} be the elements of B', also indexed in increasing order.
Note that A C A’ and B C B’. Note also that intervals of the form
la;,a; 4], 0 < i < M, and intervals of the form [b},0] ], 0 < i < N,
have lengths that are integral powers of 2.

For i with 0 < i < n + 1, consider the intervals [a;, a;1] defined
from the elements of AU{p, ¢}, and [b;, b;11] defined from the elements
of the elements of B U {[p, ¢}. Let ¢; be the number of elements of A’
in the interval [a;, a;11], and let d; be the number of elements of B’ in
the interval [b;, b;11]. If say ¢; < d;, then apply a sequence of d; — ¢
modifications to A" consisting of adding to A’ the midpoint (a}+a’,)/2
of two elements a; and a},, that reside in [a;, a;41] and renumbering so
that the indexing reflects the order. Each such modification increases
by 1 the number of elements of A" in the interval [a;, a;11] and preserves
the fact that consecutive elements of A’ are an integral power of 2
apart. If the non-specificity of where to make each modification seems
bothersome, then one could insist that a} is always chosen so that
a; = a,;. The case d; < ¢; has symmetric treatment.

Doing this for all ¢ with 0 < ¢ < n 4+ 1 lets us define a homeo-
morphism f: R — R by taking each [a}, a;,,] to [b},],,] affinely, and
which is the identity on both (—oo,p] and [g, 00). Since each [a}, a;, ]
and [0}, ¥/ ;] has length an integral power of 2, all slopes are integral
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powers of 2. The «a; contain all breaks of f and are all dyadic. The
function f has been constructed to take the points in A to those of B
and is the function we seek. 0

COROLLARY 5.2.1. For every integer n > 1, the group F is o-n-
transitive on Z[3] N (0,1).

COROLLARY 5.2.2. The group F is C°-dense in Homeo ().

PROOF. Since [ is compact and thus all elements of F' are uniformly
continuous, we can interpret C°-dense as dense under the metric

d(f,g) =sup|tf —tg|.
tel
The claim is now immediate from Lemma 5.2. O

Lemma 5.2 is only a warm up for the lemma we really need. The
restrictions on elements of F in Definition 3.1 are local restrictions.
The next lemma codifies what we need of this notion and expands on
the lemma above. The reader can supply the proof.

LEMMA 5.3. Let A and B be locally finite subsets of Z[%] with |A| =
|B|, and let X be a possibly empty collection of closed intervals with
pairwise disjoint interiors in I so that each J € X has its endpoints
in A and no points of A in its interior. Let ¢ be an order preserving
bijection from A to B, and for each J € X let g; be an element of
PL.(R) whose restriction to J satisfies (1) and (2) of Definition 3.1,
and which agrees with ¢ on the endpoints of J. Then there is an element
f € PLy(R) so that f agrees with ¢ on A, and for each J € X, f agrees
with gy on J. If A and B are finite so that AU B C (p,q) with p and
q in Z[%], then [ can be chosen to be the identity off (p,q).

Sections 5.2 through 5.5 exploit the transitivity properties of the
Thompson groups.

5.2. Trivial center. In the proof of Proposition 4.12, certain el-
ements are shown to not commute. Transitivity can be used to show
that even more elements do not commute.

LEMMA 5.4. Let P be the group of permuations on some X with a
subgroup G of P so that for any x # y in X, there is a f € G with
xf =x and yf #y. Then the centralizer of G in P is trivial.

PRrROOF. Given h € P\ {1}, we have xh # x for some z, and h
cannot commute with an element that fixes z but not zh. O

COROLLARY 5.4.1. The centralizer of F' in Homeo(I) is trivial. In
particular, the center of F is trivial.
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Proor. This follows from Lemmas 5.3 and 5.4 and the density of
the dyadics in (0, 1). d

The reader can show that the set of elements in F’' whose support has
closure in (0, 1) is a normal subgroup of F' that intersects non-trivially
each non-trivial normal subgroup of F.

5.3. Many copies of F'. We will often use the notation Fj, ; with
both a and b in Z[3] and a < b to denote the set of all PL self homeo-
morphisms of [a, b] that satisfy (1) and (2) in Definition 3.1. The points
a and b are from Z[%] in R and not necessarily confined to the unit
interval.

LEMMA 5.5. With a < b in Z[3] the set F,p under composition is
tsomorphic to F'.

PROOF. By Lemma 5.2 there is a homeomorphism g of BPLs(R)
that carries [0, 1] to [a,b]. By the definitions of F' and BPLy(R), the
chain rule, and the fact that g and g~! carry Z[1] to itself, the set Fl,
is exactly the set F9 = {f9| f € F'}. O

Note that any increasing bijection from [0, 1] to [a, b] will conjugate
F to a copy of F' acting on [a, b], but its elements will not necessarily
resemble elements of F. Even if the bijection is affine the breakpoints
will not necessarily be dyadics, although the resulting slopes will be
integral powers of 2. We will take another look at Fj,) for a positive
integer n in Proposition 11.13.

The proofs of the next two lemmas are left to the reader.

LEMMA 5.6. Let a < ¢ < b < d all be in Z[5]. Then Fjq =
<F[a1b] U F[Cvd]>

LEMMA 5.7. If0 < a <c<d<b<1 with all of a,b,c,d in Z[%}
then there is an isomorphism from F' to F,y that is the identity on
ﬂcvd]'

5.4. Direct sums and wreath products. Theorem 4.11 shows
certain groups are not subgroups of F. We briefly show a few groups
that are. First a seed lemma.

LEMMA 5.8. If a group G is isomorphic to a subgroup of F', then
the standard wreath product GUZ is isomorphic to a subgroup of F'. In
particular the infinite direct sum > ,._, ®G is isomorphic to a subgroup

of F.

1€Z

PROOF. The proof is almost identical to the proof of Lemma 4.8.
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Let G be isomorphic to a subgroup of F. Let h be a non-trivial
element of F' and by replacing h by its inverse if necessary, we can
assume there is ¢ € Z[%] so that ¢t < th. We can use Lemma 5.5 to find
an isomorphic copy Gy of G in F' with support in [t, th]. Now (G, h) is
isomorphic to G Z by Lemma 4.7. From Definition 4.4, the promised
infinite direct sum is a subgroup of G Z. O

COROLLARY 5.8.1. Thompson’s group I has subgroups isomorphic
to ZV 7, FUZ, the infinite direct sum of copies of Z, and the infinite
direct sum of copies of F'. There are also subgroups of F' isomorphic to
the iterated wreath products (- -- ((ZXZ)NZ) - - -UZ) of all finite lengths.

5.5. On the commutator and other normal subgroups. The
groups in the Thompson family tend to have “few” normal subgroups,
with many being simple. In any group, a subgroup containing the
commutator subgroup is normal. Here we will prove that the normal
subgroups of F' are exactly the subgroups containing the commuta-
tor subgroup, and that the commutator subgroup itself is simple. In
particular every proper quotient of F'is abelian.

The map ¢ : F' — Z x Z defined by ¢(f) = (log,(0f}),log,(1f"))
is a surjective homomorphism. Since Z x Z is abelian, the kernel K
contains the commutator subgroup F” of F', and K consists of all those
f € F for which there is an open U in [0, 1] about 0 and 1 on which f is
the identity. From Lemma 4.9, this gives a second reason why F’ < K.
In fact K = F’, but this will have to wait until Section 10.1 when we
know a presentation for F'.

The transitivity properties in Lemma 5.3 give the following.

LEMMA 5.9. Fori € {1,2,3,4}, let J; = [z;,y;] have non-empty
interior, and fori € {1,2,3}, assume [z;,y;] C (Tit1,Yiy1). Then
(i) thereis an f € BPLy(R) fizred on Jy and off Jy with Jsf C Ja,

and
(ii) there is a g € BPLo(R) fized off Jo so that JygNJp = 0.

LEMMA 5.10. For f € K with support of f in J = [z,y] C (0,1),
let N be the normal closure of f in F. Then there is a commutator
ce "N N with ClJ:f’J.

PROOF. From Lemma 5.9(ii) there is a ¢ € F with Jgn J = 0.
Now c= g, f] =g ' f'gf = (f~')?f has the claimed property. O

COROLLARY 5.10.1. For every integer n > 1, both K and the com-
mutator subgroup of F' are o-n-transitive on Z[%] N (0,1).

PROOF. For [A| = |B| = nin Z[$] N (0,1), we put AU B in the
interior of a closed interval J = [p,q] € (0,1) and the claim for K
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follows by adding {p, ¢} to both A and B and using Lemma 5.2. The
claim for F' follows now from Lemma 5.10. O

LEMMA 5.11. FEvery commutator of elements of F' is a commutator
of elements of K, and so F' < K' giving F' = K.

Proor. With K < F', we have K’ < F".

Let ¢ = [f, g] be a commutator in F. From Lemma 4.9, the closure
of the support of ¢ is contained in some [a,b] with dyadic endpoints
and with [a,b] C (0,1). We choose dyadic rationals p, ¢, with

[a,0] € (p,q) < [p,q] € (0,1).
Lemma 5.9 gives an h € BPLy(R) that is the identity on [a,b] and

taking [0,1] into [p,q]. Now ¢ = " = [f" ¢"] is a commutator of two
elements in K and we have shown F’ < K’. O

We prove our main claims by using techniques of Higman from
[106]. One immediate consequence is that F' is Hopfian. A group G is
Hopfian if every surjection from G to itself is an automorphism.

PROPOSITION 5.12. The following hold in F.

(1) Ewvery proper quotient of F is abelian.
(2) F' is simple.
(3) F is Hopfian.

PROOF. Let f, g be in F and let ¢ = [f, g]. We wish to show that
any non-trivial normal subgroup of F' contains c¢. That is, we wish to
show that the normal closure of any non-identity element in F' contains
c. We have been ambiguous about where the normal closure is taken
and we will play with that during the proof.

From Lemma 5.11 we know that ¢ = [f1, ¢1] with f; and g; elements
of K. Let h be a non-identity element and let U be an open subset
with closure in (0,1) so that UhNU = .

The union of the supports of f; and g; is contained in some closed
interval J in (0,1) with dyadic endpoints and there is a k € F taking
J into U. By Corollary 5.10.1, we may assume that k is in F’. Now
[f¥, g% = 1. Equivalently, [f1, ¢¥"* '] = 1. We have shown that f; and
g1 commute modulo a conjugate of h making ¢ = [f, g] trivial modulo
h. For the faint of heart, we offer the following. Let j = khk~! and N
the normal closure (again ambiguous) of h. We note that

1, o) L gl] = [ous Al 6l

= (gfl ((ffl ((glj_lgfl)j)f1>j_1)gl>j
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where each parenthesized group is in IV and thus so is the entire expres-
sion. So [f1, 1] and [f1, g]] are equal modulo N. But we have shown
[f1,¢]] to be in N (and in fact trivial).

At this point, we have shown that every proper quotient of F' is
abelian.

Now we take into account that the element k& can be taken from
F’" and we could have started with a non-identity A from F’. This
shows that every element of F” is in the normal closure in F’ of any
non-identity element of F’. This shows that F” is simple.

That F' is Hopfian follows from (1) and the fact that F' is not
abelian. U

We do not know at this point the true fact that F/ = K and that
the abelianization of F'is Z x Z. This needs the fact that zg and x;
generate F' and more combinatorial arguments.

It might be tempting to argue that F’ = K by noting that every
element of K has support bounded away from the endpoints of [0, 1]
and guessing that each such might be a commutator. But an open
question about F' is whether all elements of F” are single commutators.
However, the following is known. The argument goes back to [57].

PROPOSITION 5.13. (1) Let G act in an order preserving way on
I =10,1], so that every element of G has support bounded away from 0
and 1, and so that for allp < q in (0,1), there is an f € G withpf > q.
Then every element of G' is a proeuct of two or fewer commutators.

(II) Every element of F' is a product of two or fewer commutators.

PRrROOF. By Lemma 5.11, (II) follows from (I). We focus on (I).

We wish to show that every product of three commutators is equal
to a product of two commutators. To that end let ¢; = [a;,b], © €
{1,2,3}, be in G'. Some [p,q] C (0,1) contains the supports of the q;
and b; (and thus the ¢;). Choose f € G so that pf > ¢ and we have

0<qf'<p<qg<pf<l.

The supports of {ar, b}, {al,b]} and {agfl,b?l} are now in pair-

. . . . . 71 . .
wise disjoint intervals and so ¢y, cg, cg,f commute and their product is

a commutator. These two properties give
—1 - 1 o
creaes = erched ((c{3 Bl Cz) ((02 1)f03>
-1
= (clcgcg )(fcglf_l@f_lcglfc;g)

—1 —1
=<C1C§C§ )[Cz_lcf , 1,



5. PROPERTIES, II: FROM TRANSITIVITY 29
which is a product of two commutators. O

Lastly we show that F” is not finitely generated. This would be
slightly easier if we knew F’ = K, but transitivity makes it fairly
direct.

PROPOSITION 5.14. The commutator subgroup F' of F is not finitely
generated.

PROOF. Let ¢ be any non-identity commutator in F. Let (p,q) be
an orbital of c. We know 0 < p < ¢ < 1 and for each € > 0 there is an
element of F' taking p into (0,¢€) and ¢ into (1 —¢,1). Conjugating ¢ by
these elements shows that supp(F”’) = (0,1). But every element of F’
has support bounded away from 0 and 1. So every finitely generated
subgroup of F” has support bounded away from 0 and 1, and no finite
set in F” can generate F”. O

5.6. Centralizers. For a subset S of a group G it will be conve-
nient to use Cg(S) (or C(S) if the group G is clear) for {f € G |Vh €
S, fh = hf}, the centralizer of S in G. For a single f € G, we write
Ce(f) (or C(f)) for the centralizer of f in G.

The structure of the centralizer of an element is determined by the
“true” orbitals of the element. From Lemma 4.3, a non-dyadic rational
can be an isolated fixed point of an element of F'. Such fixed points
are “unimportant” in certain ways.

DEFINITION 5.15. For f € F, let R(f) be the set of isolated fixed
points of f that are non-dyadic rationals. A dyadic orbital of f is a
component of supp(f) U R(f).

LEMMA 5.16. If 1 # f € F has one dyadic orbital J = (a,b), then
the centralizer in Fiqp) of fliap s the maximal cyclic subgroup of Flay
that contains |y -

Proor. Note that the statement contains the claim that the max-
imal cyclic subgroup exists.

Let C be the centralizer in Fi,p of f|a. Let ¢ : Fiop) — Z be
defined by ¢(g) = logy(ag’,) for g € Fiop. Assume 1 # g € Flay is
in the kernel of the homomorphism ¢. Then g is the identity on some
la, s| with s € (a,b), but xg # x for every = € (s,t) for some t € (s,b).
The point s must be dyadic which implies that sf # s. Now ¢/ # g
since ¢/ is the identity on [a,sf] and xg/ # x for every x € (sf,tf).
So ¢ is one-to-one on C, and C' is cyclic. A cyclic subgroup of Fi,y
containing f|, is abelian and is thus contained in C'.
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PROPOSITION 5.17. Let S be a finite subset of I whose elements
have pairwise disjoint supports, and let A be the set of dyadic orbitals
of the elements in S. Let B be the set of components with non-empty
interior of fix(S). For each (a,b) € A and f € S whose support con-
tains (a,b), let gy be the identity off [a,b] and be the generator of
the mazimal cyclic subgroup of Flay that contains fly. Then with
m = |A] and n = |B|, the centralizer C(S) of S in F is a direct sum
of m copies of Z and n copies of F' as follows:

(5.1) CS) =Y (gum)+ Y Fay-

(a,b)eA [a,b]€B

PRrROOF. Because of Lemma 5.16, all we need to argue is that if g
centralizes S, then g fixes the end points of the intervals in AUB. There
are only finitely many such endpoints and if ¢ moves one of them, then
the least such will demonstrate that f9 # f for some f € S. O

The following eliminates the second summand from (5.1).

COROLLARY 5.17.1. Let S be a finite subset of F' whose elements
have pairwise disjoint supports, and let A be the set of dyadic orbitals
of the elements in S. Then

Cles) =Y (gun)

(a,b)eA

where gqp 18 as in Proposition 5.17.

Proor. This follows from the fact that S C C(S), from Proposi-
tion 5.17, from Lemma 5.5 which says that each Fl,4, (a,b) € B, in
(5.1) is isomorphic to F', and from Corollary 5.4.1 which says that the
center of F' is trivial. U

5.7. Growth. We take our first look at a metric aspect of F.

DEFINITION 5.18. If X is a generating set for a semigroup .S, then
the norm ||s|| of an element s € S is the minimum n so that s is
represented by a word in X of length n. For n € N, the n-ball B, (S, X)
in Sistheset {s € S| |s|| <n}. The growth function of S with respect
to X is the function vygx : N — N where 5 x(n) = |B,(S5, X)|. The
growth function of a group G with respect to a finite set X of group
generators for G is the growth function of G' with respect to X U X1

When X is finite, the growth function exhibits some level of inde-
pendence of X. If X; and X, are two finite generating sets of a semi-
group S, then for some m and n in N, X5 is contained in B,, (S, X1),
and X7 is contained in B, (S, X3). Now B,,,(S, X1) contains all words
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of length n in X5 and B,,, (.S, X3) contains all words of length m in Xj.
This gives

Ys,x, (mn) > s x,(n), and
Ys,x5 (Mn) > vs,x, (m).
Lettlng K = max(m’n)’ we get

s, (K1) > vs,x, (1) > vs,x, (K~ 'n).
This leads naturally to the next definition.

DEFINITION 5.19. For f,g: N — N, we write f < g to mean there
is a K > 1 so that
f(n) < g(Kn)
for all sufficiently large n, and f ~ g to mean f < g and g < f.

The discussion preceeding Definition 5.19 gives the following.

LEMMA 5.20. If X1 and X5 are two finite sets generating a group
G, then the growth functions with respect to the two generating sets are
equivalent.

For various reasons that will not concern us, the definition com-
monly used varies from Definition 5.19. For example, different con-
stant functions are not equivalent under Definition 5.19. We have al-
ready done some accomodating with the phrase “for sufficiently large
n” since it is generally accepted that the concerns with a growth func-
tion are its long term behavior. See the Chapter VI of the book [100]
for considerably more information and discussion.

Let exp,(n) = k™. It is a consequence of Definition 5.19 that for
any real ¢ > 1 and k£ > 1 we have exp, ~ exp;.

DEFINITION 5.21. Let S be a semigroup with finite generating set
X. We say that S has exponential growth if vg x ~ exp,.

No growth function exceeds exp,. We have the following.

LEMMA 5.22. Let S be a semigroup generated by a set X with k
elements. Then vgx = expy.

PRrROOF. Let T be the free semigroup on X. Then for all n € N,
we have |B,(S, X)| < |B.(T, X)]. O

The next lemma shows that Definition 5.19 is not too liberal.

LEMMA 5.23. Let S be an infinite semigroup with finite generating

set X, and let K be a real number greater than 1. Then there is a finite
generating set Y for S so that for alln € N, vsy(n) > vsx(Kn).
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PROOF. Let Y = Bg(S,X) and let w be a word in X of length
no more than Kn. We can write w = wyws - - - w,, where each w; has
length no more than K. This puts w in B, (S,Y). O

Lemma 5.23 shows that any function in the class of a growth func-
tion can be exceeded by changing the generating set.

LEMMA 5.24. Let Q C P C S be semigroups with finite generating
set Z,Y and X, respectively with Y C X. Then the following hold.

(1) For alln, vpy(n) < ysx(n).
(2) We have v9.z = Vs.x-

PRrROOF. The first is clear. For the second, let W = X U Z and we
get 70,z X Ysw ~ 7¥s,x from the first claim and Lemma 5.20. U

We can now apply all of the above to F.

LEMMA 5.25. The free semigroup of rank 2 embeds in F. It follows
that F' has exponential growth.

PROOF. From the transitivity lemmas of Section 5 it follows that
there is an interval J and elements [ and r so that JI is the left half
of J and Jr is the right half of J. If something specific is desired,
J=1[%2], 1 = zoxy 2" and r = zozy " will do. Let u = wjus -,
and v = vyvy - - - v, be different products of the elements of {l,7}. We
want to show that JI # Jr, and it suffices to assume that u,, # v,. But

under this assumption, JI and Jr reside in different halves of J. 0
A bit more work gets the following.

LEMMA 5.26. [43, Theorem 4.6] The elements x5 and ot of F
generate a monoid isomorphic to the free product of N with Z.

6. Combinatorics, I: binary partitions

6.1. Words, the free monoid, and the Cantor set. We briefly
introduce the tools we will work with. The free monoid of words over
an alphabet organizes much of the combinatorics of the Thompson
groups. The Cantor set has two uses. The compactness of the Cantor
set simplifies an argument, and the Cantor set is a superb model of
what the Thompson groups act on.

6.1.1. Words. In our applications, words are sequences of symbols
from a finite, totally ordered alphabet. The order will be used to order
the words over the alphabet.

DEFINITION 6.1. An alphabet is a finite totally ordered set A. The
elements of A will be called letters or symbols. A word over A is a
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sequence in A either with domain some n = {0,1,...,n—1} (including
0 = 0, giving the empty word ), or with domain w, the first infinite
ordinal. A word u with domain n is finite and its length |u| is n. A
word that is not finite is infinite.

For an alphabet A, we use A* to denote the set of all finite words
(including the empty word () over A and A“ to denote the set of all
infinite words over A.

Symbols in a word will be written without separators, so examples
of finite words over {z,y} would be 0, z, y, xy, xyxz. We use subscripts
(as in ag) to denote the independent variable, and words are written
from left to right with increasing subscript (as in agajas . ..a,_; for a
word of length n). We use adjacency to denote concatenation, and the
concatenation uv (for u followed by v) makes sense for a finite word
u and any word v. We leave formal definition of concatenation to the
reader. We can also concatenate over sets. If u is a finite word, U a
set of finite words, v a finite or infinite word, and V' a set of finite or
infinite words, then uV = {uwv | v € V}, Uv = {wv | v € U}, and
UV ={uw | v € U v € V} all make sense. We will often use the
notation u™ with u € A or A* which represents the concatenation of n
copies of u, and u* which is the concatenation of infinitely many copies
of u.

DEFINITION 6.2. In uwv, u is a prefiz of uv and v is a suffiz of uv.
We will write © < wv and note that < is a partial order on A*. As
usual u < v means v = v and u # v. We will write v L v to mean
that both © < v and v < u are false, and will say that v and v are
orthogonal. If w L v, then there is a longest common prefix u A v of
u and v. We extend < to a total order < by writing u < v if v < v,
or if w L v with w = u A v, then there are a,b in A with wa < u and
wb = v, and we declare u < v if and only if a < b. The resulting order
< is the usual prefix order defined for trees. See Definition 8.1.

6.1.2. The free monoid. Concatenation makes A* a monoid with
identity (), and we denote it 94 when we wish to emphasize its struc-
ture as a monoid. The alphabet of heaviest use in this chapter will be
{0, 1}, and for {0, 1} we simply write 9. The monoid 91, is the free
monoid over A since different words are different elements in 9Dt4. We
use A1 to denote the set of all non-empty finite words over A and this
forms the free semigroup over A to which we give no separate notation.

We will deal with more monoids than the free monoid and we will
work with several properties of monoids. Here we list those properties
that apply to the free monoid. More properties will be added when
more monoids are added.
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In the following, M will represent an arbitrary monoid.

DEFINITION 6.3. We say that M is left cancellative if ab = ac always
implies b = ¢. We say that M is right cancellative if ab = cb always
implies @ = ¢. We say that M is cancellative if M is both right and
left cancellative.

DEFINITION 6.4. If a = bc in M, then b is a left factor for a. We
say that d is a common left factor for e and f if d is a left factor of
both e and f. We say that g is a greatest common left factor of h and
k if it is a left factor of h and k and every common left factor of h and
k is a left factor of g. We say that M has greatest common left factors
if every pair of elements in M has a greatest common left factor.

DEFINITION 6.5. Right factors, (greatest) common right factors,
and having greatest common right factors are defined by replacing
“left” by “right” everywhere in Definition 6.4.

In M4, left and right factor are synonymous, respectively, to prefix
and suffix. The latter terms will often be used instead.

DEFINITION 6.6. A unit in a monoid M is an x € M withay € M
so that xy = yxr = 1. We say M has trivial units if the only unit is 1.
A length function for M is a homomorphism to (N, 4) whose preimage
of 0 is contained in the units of M.

LEMMA 6.7. The free monoid M = A* is cancellative, has greatest
common left and right factors, has trivial units, and the length of a word
15 a length function on My.

6.1.3. The Cantor set. If A is finite, then the collection {uA* |
u € A*} forms a basis for a topology on A“ that is homeomorphic
to the Cantor set. We use €4 to denote A¥ with this topology and
use € when A = {0,1}. The notation €, uses the set convention
n=40,1,...,n—1}. Withu € A*, we will often use u€ as an equivalent
to uA” to denote a typical basic open set in €. We will refer to u€ as
the cone at u.

6.2. Binary partitions.
6.2.1. Definitions and basics.

DEFINITION 6.8. For integers n > 0 and 0 < ¢ < 2", a dyadic
interval in I = [0, 1] is an interval of the form
2+ 1

Pl
(6.1) J = [2_“’ o } with midpoint m(J) = ST
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With J as in (6.1), we set

J0 = [;;n,mu)} Cand J1 = {m(]),

141
al
and are each said to be obtained from J by a binary splitting. In the
above, we regard 0 and 1 as operators on the right and extend this to
elements of 9 = {0, 1}* recursively by setting JO = J, J(w0) = (Jw)0
and J(wl) = (Jw)1.

The next lemma is left to the reader.

LEMMA 6.9. The following hold.

(1) For J a dyadic interval, J = JO U J1, the intersection JO N
J1 contains only m(J), and J < JO < J1 under the order
on intervals from Remark 3.4 augmented (anti-intuitively) by
declaring A < B for a closed interval A that properly contains
a closed interval B.

(2) Forintervals J and K in I, an increasing, continuous function
takes J onto K affinely, if and only if it takes JO affinely onto
KO and J1 affinely onto K1.

(3) The function that sends w € M to Tw is a bijection from M
to the set of dyadic intervals of I for which Iw C Iv if and
only if v is a left factor of w, and for which Iw and Iv have
disjoint interiors if and only if w L v, in which case w < v
mmplies Tw < Iv.

(4) Two dyadic intervals in I either have disjoint interiors or are
nested.

(5) The midpoint function m of (6.1) is a bijection from the set of
dyadic intervals of I to the set of dyadics in (0,1).

(6) If J C L are dyadic intervals with J # L, then J is a binary
splitting of a unique dyadic interval K. Further K C L.

DEFINITION 6.10. We call a partition P of J a binary partition of
J if all its elements are dyadic intervals. If P and () are partitions of J,
then we say that () refines P if every interval in () is contained in some
interval in P. If (P, Q) is a partition pair as in Definition 3.3 with both
P and @ binary partitions of .J, then we call the pair a binary partition
pair. As in Remark 3.4, a bijection o from P to ) will eventually be
inserted into the pair.

DEFINITION 6.11. If P is a partition of a closed interval J and
K is in P, then a binary splitting of P at K is the partition P’ =
(P\{K})U{KO0, K1}. We say that P’ is obtained from P by a binary
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splitting. We say that @) is a binary refinement of P if () is obtained
from P by a sequence of binary splittings.

In I, notions come together.

LEMMA 6.12. Let P be a binary partition of I and let Q) be a re-
finement of P. Then Q) is a binary partition of I if and only if Q) is a
binary refinement of P.

PRrROOF. The claim is clear if @) is a binary refinement of P. The
argument assuming that @) is a binary partition of I is inductive. If J
is shortest so that J is in () but not P, then () is obtained as a binary
splitting of some binary partition R of I at some K. From Lemma
6.9(6), K is contained in an interval of P, and R is a refinement of

P. U

COROLLARY 6.12.1. A partition of I is a binary partition of I if
and only if it is a binary refinement of the partition {I} of I.

COROLLARY 6.12.2. If P and Q) are binary partitions of I, then
there is a common binary refinement T of P and Q) so that every com-
mon binary refinement of P and () is a binary refinement of T.

PROOF. The desired T consists of all the intervals in P U @) that
do not properly contain any other interval in P U Q). 0

The following is immediate.

LEMMA 6.13. If P is a binary parition of a dyadic interval J and
f € F is affine on J, then f carries P to a binary partition of Jf.

6.2.2. Representations by binary partition pairs. If (P,Q) is a bi-
nary partition pair for I, then the PL. homeomorphism of I determined
by (P, Q) as described in Definition 3.3 is clearly an element of F. The
following shows that all elements of F' can be obtained this way.

PROPOSITION 6.14. FEvery element of F can be represented by a
binary partition pair of I.

PRrROOF. Let f be in F. There are finitely many breakpoints of f,
all dyadic, and there is a 7 € N so that every breakpoint of f occurs at
an integral multiple of 277. Let P, be the binary partition of I whose
endpoints are all the integral multiples of 277. Now let k € N be such
that the endpoints of all the Jf with J € P, are integral multiples
of 27%. The set of all integral multiples of 27* are the endpoints of a
binary partition @) of I.

For J € Py, the length of Jf is an integral power of 2 and thus a
union of m intervals in the partition () where m is an integral power of
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2. Thus this set of m intervals from () forms a binary partition of Jf
and its image under f~! is a binary partition P; of J, and all intervals
in P; are dyadic. The partition P = U{P; | J € P} is now a binary
partition of I whose image under f is @), and (P, Q) represents f. [

The binary partition pair representing an element of f is not unique
To discuss this, we elevate splitting partitions to splitting partition
pairs. We introduce some flexibility to be able to discuss more than F
by the end of this chapter. Recall that a binary pair (P, Q) is general-
ized in Remark 3.4 to a triple (P, 0, Q) where o is a bijection from P
to (). For elements of F', the bijection ¢ is order preserving.

DEFINITION 6.15. If (P, 0, Q) is a binary partition pair of a closed
interval J, and K is in P, then (P’,0’,Q)’) is the result of a matched
binary splitting of (P, 0, Q) at K if P’ is obtained from P by a binary
splitting at K, ()’ is obtained from ) by a binary splitting at Ko,
and o’ = o off K and takes K0 to (Ko)0, and K1 to (Ko)l. The
notation is as in Definition 6.8. We say that (P’,0’,Q’) is a matched
binary refinement of (P,o,Q) if (P',0’,@Q’) is obtained from (P, o, Q)
by a sequence of matched binary splittings. The reverse of a matched
binary splitting is a matched binary reduction. If (P, o, Q) (or (P, Q)
if o is order preserving) is a binary partition pair, then [P, o, Q] (or
[P,Q]) will denote the equivalence class of (P,0,Q) (or (P,Q)) under
the equivalence relation generated by matched binary splittings.

The following is clear.

LEMMA 6.16. For a binary partition pair (P,Q), all elements in
[P, Q)] represent the same element of F.

If (P,Q), (P, Q) and (P, Q') are binary partition pairs representing
the same element of F', then P = P' and Q = Q.

PROPOSITION 6.17. Every f in F' is represented by a unique binary
partition pair (P, Q) that is irreducible with respect to matched binary
reduction, and the elements of [P, Q| are exactly the pairs that represent

f. Further any binary partition pair representing f is a matched binary
refinement of (P, Q).

Proor. If (P,Q) and (R, S) are binary partition pairs that both
represent f € F, then there is a common binary refinement 7" of P and
R. There are then corresponding matched binary partitions (7', Q")
and (T, 5"), respectively, of (P, Q) and (R, S). Now Q' = 5" by Lemma
6.16, and we get that (R, S) is in [P, Q).

Since reductions lower the number of elements in a partion, it fol-
lows from Proposition 6.14 that at least one irreducible representative
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exists for each element of F'. Assume that a partition pair (P, Q) allows
for two reductions. One reduction must replace some J0 and J1 in P
with J, and the other reduction must replace some K0 and K1 in P
with K (and corresponding replacements in @)). Since JO and K0 are
left halves of intervals, then either J = K or they are intervals with
disjoint interiors. If J # K, then doing both reductions in either order
gives the same result. This verifies the diamond condition of Section
47 and the claims follow from Lemma 47.2 and Corollary 47.2.1. U

The irreducible representative of Proposition 6.17 is a normal (and
not just seminormal) form. It is the model for all normal forms that will
occur in this chapter. However, even the non-reduced representatives
give a workable seminormal form since the only partition pairs that
represent the identity are of the form (P, P).

6.2.3. Multiplication and Thompson’s group F'. Multiplication as in
Section 3.2 is opportunistic. We have the special case (P, Q)(Q, R) =
(P, R). Given (P,Q)(R,S), we let T be the common binary refinement
of @ and R. Matched binary refinements produce (P’,T) and (7, 5")
for (P,Q) and (R,S) to give (P',S") for the product. This can be
reduced to an irreducible if desired.

The product formula (P,Q)(Q, R) = (P, R) agrees with composi-
tion of the functions represented by the pairs. From Lemma 6.16 the
calculation of the product (P,Q)(R,S) also agrees with the composi-
tion of the functions represented. If we let F'» the set of all classes
[P, Q] with (P, Q) a binary partition pair, and give F'» the multiplica-
tion just defined, then we have the following.

PROPOSITION 6.18. The multiplication above is well defined and
makes F» a group that is isomorphic to Thompson’s group F.

REMARK 6.19. One can think of F' as the set of irreducible, binary
partition pairs where multiplication consists of the procedure given
above followed by a reduction of the result to an irreducible pair.

7. Combinatorics, II: Prefix sets

We use Propositions 6.14 and 6.17 along with Lemma 6.9(3) to turn
working with elements of F' into combinatorial exercises.

7.1. Generalizing Section 6. This topic is large and must be
approached with caution. Generalizations offer the following.

(1) Agreement with the literature.
(2) Easier calculations.
(3) Easier access to different aspects of an object.
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(4) Easier access to variations of an object.

(5) Make clear general and universal aspects of an object.

(6) Give unified proofs of some favorite properties of a family of
objects.

We will be motived less by Item (6) and more by Items (1) through
(5). While certain properties such as simplicity or finite presentability
are proven many times over in the family of Thompson groups, this
book will give only one or two examples, and will give references for
more. There have been several successful constructs that unify different
portions of the Thompson family and these will be discussed in the end
notes to this chapter. We will only generalize slightly here, and will do
so in small steps. Deeper generalization will occur in other chapters.

Section 6.2 starts with a set of intervals and builds a structure
F% that is established in Proposition 6.18 to be a group isomorphic to
Thompson’s group F'. The fact that the set of intervals is parametrized
by the free monoid 9t on {0, 1} in a way that cooperates with much of
the structure is the key to the first generalization that we build. We
will use the parametrization to build a structure on 91 that will be
isomorphic to F'» and thus F.

This has two consequences. It gives a combinatorial tool for working
with F', and it gives an easy way to show that other structures (here
we focus on constructs using intervals) are isomorphic to F. Much of
the work is imitation of material in Section 6.2 and will be left to the
reader.

There are three levels of structure to model.

7.2. The interval level. The order preserving bijection from 9
to the set of dyadic intervals in [ has already been established by
definition () — I, w0 — (Jw)0 and wl — (Jw)1l) and Lemma 6.9(3).

7.3. The binary partition level: prefix sets. We imitate bi-
nary partitions.

DEFINITION 7.1. If P is a subset of 9t and p is in P, then a binary
splitting of P at p yields the subset Q = (P \ {p}) U{p0,pl}. A prefix
set for M is either {(} or one derived from {()} by a sequence of binary
splittings.

The term “prefix set” is justified by the following.

LEMMA 7.2. A subset P of M is a prefix set if and only if for every
word w € {0, 1} there is a unique prefix for w in P.
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PROOF. The direction assuming that P is a prefix set is an easy
induction starting with the fact that every word in {0,1}* has the
unique prefix () in {(}.

Assume now that P has a unique prefix for every word in {0, 1}“.
Recall that we view of the Cantor set € as {0,1}*, and note that P is
finite since {p€ | p € P} is a cover of € by pairwise disjoint open sets.
We can now imitate the proof of Lemma 6.12. Assume P # {0} and
let p be longest in P. If p = p/0, then an infinite word beginning with
p'1 must have a unique prefix in P which must be pl by our choice of
p. So P is the binary splitting of (P \ {p'0,p'1}) U {p'} which is easily
shown to have a unique prefix for every word in {0, 1}*. If p = p'1, the
argument is similar. The claim follows inductively. U

COROLLARY 7.2.1. A subset P of M is a prefix set if and only if
IP = {Iw | w € P} is a binary partition of I, in which case w — Tw
15 an order preserving bijection from P to IP. The map P — IP gives
a bijection that commutes with binary splittings from the set of prefix
sets in MM to the set of binary partitions of I.

PRroOF. The fact that if () is a binary splitting of the prefix set P at
p, then 1Q = {Iw | w € Q} is a binary splitting of /P = {Iw | w € P}
at Ip is straightfoward. The if and only if is an induction based on
the parallel Corollary 6.12.1 and Definition 7.1. The other claims are
straightforward. O

7.4. The binary partition pair level: prefix set pairs. We
continue to mirror the structures in Section 6.2.

DEFINITION 7.3. In the following P and () are prefix sets.

(1) If every g € @ has a prefix in P, then Q) refines P.

(2) If @ is obtained from P by a sequence of binary splittings,
then @ is a binary refinement of P.

(3) If o : P — @ is a bijection, then (P, o, Q) is a prefix set pair. If
o is omitted, it is assumed to be the order preserving bijection.

DEFINITION 7.4. In the following (P, 0, Q) and (P, o', Q') are prefix
set pairs.

(1) If p is in P, then (P’',0’,Q’) is the result of a matched binary
splitting of (P, 0,Q) at p if P’ is obtained from P by a binary
splitting at p, )" is obtained from () by a binary splitting at
po, and ¢’ = o off p and takes p0 to (pc)0 and pl to (po)l.

(2) We say that (P',0’,Q") is a matched binary refinement of
(P,0,Q) if (P',0',Q’) is obtained from (P, o, Q) by a sequence
of matched binary splittings,
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(3) The reverse of a matched binary splitting is a matched binary
reduction. A prefix set pair permitting no matched binary
reduction is said to be irreducible.

(4) We use [P, 0,Q] to denote the equivalence class of (P, 0, Q)
under the equivalence relation generated by matched binary
splittings.

The items in the next proposition are either proven by imitating
the proof of the corresponding fact from Section 6.2, or by using the
proven properties of the parametrizaton of dyadic intervals by 9.

PROPOSITION 7.5. For prefiz sets P and @, Q is a refinement of
P if and only if Q) is a binary refinement of P.

Any two prefix sets have a common (binary) refinement.

Setting (P,0,Q) — (IP,o’,1Q) where o' is induced by o gives a
bijection from the set of prefix set pairs to the set of binary partition
pairs of I that commutes with matched binary splittings and that carries
[P,o,Q)] onto [IP,o',1Q).

FEvery [P, o, Q] has a unique irreducible element from which all other
elements in [P, o, Q] are obtainable as matched binary refinements.

7.5. Multiplication. At this point, a multiplication on the classes
[P, Q] of prefix set pairs can be copied word for word and letter for letter
from Section 6.2.3 to create a set with multiplication that we denote
Fyn. We have the following.

PROPOSITION 7.6. The multiplication just discussed makes Fyn a
group isomorphic to Fp and thus also isomorphic to F'.

The prefix set pairs that represent the identity are those pairs of the
form (P, P). This follows from the fact that the only binary partition
pairs that represent the identity are those pairs of the form (P, P).

Multiplication using prefix set pairs is practical, but often space
inefficient. We will introduce tree pairs in Section 8 which tend to be
more popular since multiplication with tree pairs is also practical and
perhaps more space efficient.

We give an example. The generators zp and z; of (3.1) can be
represented as prefix set pairs as follows.

0 — 0
00 — 0
0l — 10 100 — 10
To= 1= 1901 = 110
1 — 11

11 — 111
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Listing the elements of a prefix set horizontally, and placing one prefix
set over the other is another option. We calculate z% as follows.

000 — 00
00 =0\ /00 =0 00 — 0
) 001 — 01
w2=|01 10|01 —10]| = 01 — 10
01 — 10
1 =11/ \1 =11 1 =11
- 1 =11
(7.1) 000 — 00\ /00 — 0 000 — 0
001 — 01| [01 — 10 001 — 10
“lot =10 |10 10| [o1 —110
1 —11) \11 - 11 1 =111

The first change is a matched binary splitting at the first line of
the first factor. The second change is a matched binary splitting at the
last line of the second factor. After the second change, opportunistic
multiplication can take place.

REMARK 7.7. In parallel to the point in Remark 6.19, one can think
of I’ as the set of irreducible, prefix set pairs where multiplication of
two pairs is followed by a reduction of the result to an irreducible pair.

7.6. Examples. When the properties proven about prefix set pairs
and a system of intervals having the properties in Items (1) and (2)
from Lemma 6.9 are combined we get other versions of F'. We will give
several examples. We also immediately get a faithful action of F' on
the Cantor set.

7.6.1. F on the line. Let J be the set of intervals in R consisting
of R, all [k, 00) and (—o0, —k| for k € N, and all integer translates of
the dyadic intervals from Definition 6.8. We tell how to “binary split”
these intervals. Rules for the unbounded intervals differ from the rules
for the bounded intervals. For a bounded interval J € J we let JO be
the left half of J and J1 be the right half of J exactly as in Definition
6.8. We set RO = (—00,0], R1 = [0,00) and for all other unbounded
J € J, and for i € N we set

(—o00, —k]0 = (=00, —k — 1], [k,00)0 = [k, k + 1],
(—o0, —k]1 = [k —1,—F], [k,00)1 = [k+1,00).

We pick out certain select maps between the intervals in J. For
J and K in J both bounded, our select map is the unique increasing
affine map from J onto K. For J = (—o0, —i] and K = (—o0, —k], our
select map is the unique map of slope 1 from J onto K. Similarly for
J =i,00) and K = [k, 00), our select map is also the unique map of
slope 1 from J onto K. Our select map from R to R is the identity.
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There are no other maps that need to be defined since any partition
by elements of J of R with more than one element must have an
interval of the form (—o0, j] as the leftmost interval and an interval of
the form [k, 00) as the rightmost interval. The only partition of R with
one element is {R}. Thus a pair of partitions P and ) of R by elements
of J with the same number of elements induces a homeomorphism
from R to itself using the select maps that we have defined to take the
elements of P to those of R so as to preserve the order.

We claim that we have reproduced the properties in Items (1) and
(2) of Lemma 6.9 which we now repeat so as to fit our current situation.
The following hold.

(1) For J € J, J = JOUJ1, the intersection JON.J1 contains only
the common endpoint of JO and J1, and J < J0 < J1 under
the order from Remark 3.4 as augmented by Lemma 6.9(1).

(2) For intervals J and K in J, a select function takes J onto K,
if and only if its restrictions JO and J1 are select functions
onto K0 and K1, respectively.

We leave it to the reader to define the bijection from 9t to J that
starts wtih # — R, and to verify that properties corresponding to
Items (3) and (4) from Lemma 6.9 hold. The rest of the behavior of
binary partitions of I can be imitated either from what has just been
estasblished or by using the known properties of prefix sets, prefix set
pairs and the structure of Fyy. We then get equivalence classes of
partition pairs that use intervals from J to produce a multiplicative
structure on those classes that we will denote Fr. The reader can verify
the truth of the following.

PROPOSITION 7.8. The mulitplicative structure of Fr is a group
isomorphic to Fyn and thus also isomorphic to F.

The generators corresponding to zy and x; of F' are easy to describe.
The generators xy and x; are represented by the prefix set pairs

zo =({00,01,1}, {0, 10, 11})
z; =({0,10, 101,11}, {0, 10,110, 111})

Using the intervals from 7, the first gives the homeomorphism s with
ts = t+ 1 on R, and the second gives the homeomorphism y, on R
defined by

(7.2) tyo=1<2t, 0<t<l,



44 2. A FIRST LOOK AT THE FIRST THOMPSON’S GROUPS

The notation yo will be explained and extended in Section 9.4.
The graphs of s and y, are shown below.

S Yo

The reader can also verify the following.

PRrRoOPOSITION 7.9. The elements of Fr are those PL homeomor-
phisms f of R whose slopes are integral powers of 2, whose break points
are dyadic rationals and for which there are integers N, P, n and p
that depend on f so that the restriction of f to (—oo, N| agrees with
x +— x +n and the restriction to [P, o0) agrees with © — x + p.

REMARK 7.10. The group Fg is conjugate to the action of F' re-
stricted to (0,1). Let A map

1

T — —n, neN,
1
1—2n+2 — n+1, neN.

So...,th==2th==1,3h=0,3h=11h=2 .., etc

We extend h to be piecewise linear between the values defined.
The reader can show that h conjugates F' to Fr. It is entertaining
to observe the cancellation of all but finitely many breakpoints of h
during the conjugation of an f € F' by h.

7.6.2. F on a half line. Let Fs( denote the subset of Fr consisting
of those elements that are the identity on (—oo,0]. This set is clearly
closed under product and inverse, and so is a subgroup of Fr. The
reader can show in either of two ways that F>( is isomorphic to F.
One way is to build a conjugator taking the action of F' on (0,1) to
F-. The other way is to note that the intervals in J from Section 7.6.1
that are contained in [0,00) form a system of intervals parametrized
by 9 starting with () — [0, 00) that has all the properties of J needed
to establish the isomorphism. If we conjugate F>, by appropriate ele-
ments of Fgr, we get isomorphisms from F' to every F-, with a € Z[%]
consisting of those elements in Fr that are the identity on (—oo, al.
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7.6.3. A piecewise projective version F'. We consider maps of closed
intervals to closed intervals, but instead of maps that are affine on each
interval, we consider maps that are projective on each interval. We
start with a description of the intervals involved.

Let A = [}, £] be an interval with rational endpoints. From this
point all rationals will be represented as ratios of integers in lowest
terms with positive denominator. As an extension of this, we allow the

endpoints co = % and —oco = _Tl, and we think of R as [—o00, 00].

m
We use the matrix ( n §> which we also call A to represent the

interval A = [, 2]. We will not distinguish between the matrix and the
interval. It is easy to show that, except for A = R, we have det(A) < 0
if and only if 2 < g. The set P of intervals that we will work with
will consist of R and those intervals A with rational endpoints with
det(A) = —1. Note that for each integer 4, the interval [i,i+ 1] is in P.

To describe the parametrization of P by 91, we note that for A =
(0 i Py vt a0 = (0 I Y anan = (10
are in P. In particular, as intervals, A0 can be viewed as a “left half”
of A and Al can be viewed as a “right half” of A. We set R0 = [—00, 0]
and R1 = [0, 00|, as expected.

Given A and B in P\ {R}, we can form the matrix BA~! which,
acting on the left, carries A to B. This will be an integer matrix with
determinant 1 and thus an element of SL(2,Z). We will think of BA™!

as an element of PSL(2,Z) since —I takes A = [, 5] to itself. Now,

n’

Given M = (a Z) € PSL(2,Z), and A = (ZL 2) € P\ {R} we
c
b b
have MA = ma+no patyq This agrees with the projective

mc+nd pc+ qd
action of M on R defined by

at+b
ct +d

(7.4) t—

because if ¢ is the rational ™, then the effect of M on ? is

m am + bn
——.

n cm +dn
So our select map between intervals in A and B in P \ {R} is the
action by the matrix BA™! € PSL(2,Z) acting on the left. The only

special case is that R only maps to R and our select map there is the
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identity. The following is now a set of exercises for the reader. The
first item is the bulk of the work.

LEMMA 7.11. The following hold

(1) Starting with RO = R, every interval in P is of the form Rw
for some w € M.

(2) The “action” of PSL(2,7Z) is truly an action in that My (Mst) =
(MlMg)t

(3) Properties corresponding to (1) and (2) of Section 7.6.1 hold.
Specifically for (2) and A and B in P\ {R} we have that
the restriction of BA™' to A0 is (B0)(A0)™! and to Al is
(B1)(A1)~%.

If the process in Section 7.6.1 is followed, if equivalence classes of
pairs of partitions of R using elements of P are defined, and projective
maps are used to to take the intervals in the first partition of the pair
to the intervals of the second, then we have a our set of piecewise
projecive elements of Homeo(R). Opportunistic multiplication gives a
structure Fp for which the following holds. It will be necessary to note
that every group is isomorphic to its opposite.

PROPOSITION 7.12. The multiplicative structure Fp is a group iso-
morphic to Fyy and thus also isomorphic to F.

As bits of extra interest, the reader can show that the element
corresponding to xg is t +— t 4 1, that the element corresponding to x;
agrees with the element gy, of (7.2) and (7.3) on the complement of [0, 1]
but not on [0, 1], and that, unlike F', every element of Fp has continuous
first derivative (but not necessarily continuous second derivative).

7.6.4. Action on the Cantor set. Prefix set pairs give a very direct
way to describe a natural action of F' on the Cantor set €. Recall that
we identify the Cantor set with {0, 1}*, and that we use u€ = {ua | a €
¢} to denote the clopen set in € of all words that start with u. Given
a prefix set pair (P, o, W) representing f € F, we set (ua)f = (uo)«
for all w € P. With o the order preseving bijection from P to (), this
gives an action of F' on €.

We can interpret each word o € € as a real number in I = [0, 1]
by thinking of it as a binary expansion of a real number with “binary
point” immediately to the left of the first symbol in a. This creates a
map 7 : € — [ that is two-to-one to the dyadics in I and one-to-one
everywhere else. If # is the homomorphism from F' to the homeo-
morphisms of the Cantor set given above, then for f € F we have
wf = 0(f)m, composing left to right.
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8. Combinatorics III: Trees

Binary trees mirror prefix sets over {0,1}. The shift from prefix
sets to binary trees is mostly an exercise in changing the vocabulary,
but trees give a convenient way to represent elements of F' and to
calculate with them. They are one of the most popular ways to work
with Thompson’s groups. We adopt a restricted definition of a tree.

8.1. The definitions.

DEFINITION 8.1. Given a finite, totally ordered alphabet A with
|A| = n, the complete, rooted n-ary tree Ty has as vertices (nodes) the
elements of the free monoid My = A* over A. Each v € T has n
children, consisting of all the va with a € A. The parent of each va
is v. The root of T4 is () and is the only node of T, with no parent.
The transitive closure of “child of” is descendant, and the transitive
closure of “parent of” is ancestor. The root is the ancestor of all nodes
in T4 other than itself. We order the nodes of T using the order of
Definition 6.2. This is the usual prefix order given to trees where each
node has a fixed total order on its children.

DEFINITION 8.2. All n-ary trees other than the complete n-ary tree
will subtrees of T4. An n-ary tree is finite if it has finitely many nodes.
For a subset T of T4 to be a subtree of Ty, all of the following must be
satisfied.

(1) There must be a root r of T" that is either specified or under-
stood to be ), the root of Ty.

(2) A node v of a T" will either have no children or will have as
children all the children that v has in 7T4.

(3) Every node w other than the root r will have as parent the
parent that w has in 74 and r will be the ancestor of every
node of 7" other than 7.

The nodes of T" with no children will be the leaves of T'. We will
often use A(T') to denote the set of leaves of the tree T. All nodes of T
that are not leaves of T" are internal nodes of T'. The restricton of the
prefix order on T4 to T is used as the order on the nodes of T'.

The trivial tree has only one node, which is then both its root and
a leaf.

We will constantly exploit the fact the nodes of a tree are members
of a monoid.

DEFINITION 8.3. If T is an n-ary tree rooted at r € T4 withv € T,
then T,, the subtree of T rooted at v, is the set of nodes {vu | vu € T'}.
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The tree T'/r is the set {u € My | ru € T} and is the tree T rerooted
to (). Note that T,/v is the subtree of T" rooted at v rerooted to (.
If T is a tree rooted at r, if v is a leaf of T, and U is a tree rooted
at (), then the result of attaching U to T at (the leaf) v is the tree
TUoU =TU{vu|ueU}.

LEMMA 8.4. If S and T are finite n-ary trees with S C T, and A(S)
is the set of leaves of S, then

T=5u| |J T|=sul |J v@/w

vEA(S) vEA(S)

There are several places in the definitions above where it is implied
that a certain collection of nodes forms a tree. The reader can verify
that these implications are correct. The following can be useful.

LEMMA 8.5. A subset of Tx is a tree rooted at () if it is closed under

parent and sibling, where the latter means that if va is in T for an
a € A, then vb is in T for all b € A.

At this point it is clear that ancestor is the same as prefix or left
factor and descendant is the same as right multiple.

8.2. Connections to prefix sets and F. We now replace the
general alphabet A by {0,1} and drop the subscript A. So all trees
are binary and 7 is the complete, rooted, binary tree. To continue the
connection between prefix sets and trees, we need more definitions.

DEFINITION 8.6. A caret /\ is a triple {v,v0,v1} in T. A binary
splitting at v of a finite binary tree T" with leaf v is the tree TU{v0, v1}.
This is also called attaching a caret to T at v. A binary refinement is
obtained by a sequence of binary splittings.

A tree pair is a triple (T,0,S) where T and S are finite, binary
trees, and o is a bijection from the leaves of T" to the leaves of S. If o
is omitted, it is understood to be the bijection that preserves the prefix
order.

REMARK 8.7. For binary trees, an infiz order on the nodes is also
available. This is defined recusively by saying that for each node wu,
u0 and its descendants come before u in the order, and ul and its
descendants come after u in the order. For a finite tree T', the orders
on its leaves inherited from the prefix order and the infix order agree.
So there is never a question as to what is meant by saying that o in
(T, 0,S) is order preserving. The infix order is sometimes useful when
dealing recursively with all nodes in a binary tree.
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The key connection to prefix sets is the following which is left to
the reader.

LEMMA 8.8. If T is a finite binary tree rooted at (), then A(T), the
set of leaves of T is a prefiz set for M. Conversely, if P is a prefix
set for M then there is a unique finite binary tree Tp rooted at ) with
A(Tp) = P. Further, a prefix set Q is a binary splitting of P at p if
and only if T is a binary splitting of Tp at P.

At this point, the reader can follow the outline of Section 7 and de-
fine matched binary splittings, irreducible tree pairs with respect to the
reverse of matched binary splittings, matched binary refinements, the
equivlance classes on binary tree pairs, and the opportunistic multipli-
cation on the set of such pairs. The resulting multipicative structure
can be denoted Fr, and the reader can show the following.

PROPOSITION 8.9. Opportunistic multiplication makes Fr a group
1somorphic to Fyy and thus also isomorphic to F'.

Fach element of Fr has a unique representative that is irreducible
and from which all other representatives of that element can be obtained
by sequences of matched binary splittings.

The representatives of the identity are those tree pairs of the form

(T,T).

8.3. Working with trees.
8.3.1. More infrastructure.

DEFINITION 8.10. If T" and S are binary trees with 7" C S, then
S is a refinement of T. The reader can show that for binary trees,
refinement and binary refinement (Definition 8.6) are synonymous.

The leaves of a finite binary tree inherit a total order from the prefix
order on the nodes of the tree. We number the leaves of a finite binary
tree in order starting at 0.

Since binary trees are subtrees of the complete, binary tree T, we
can take unions and intersections of binary trees. We can also take set
differences, but when we do so we regard the trees as unions of carets
rather than collections of vertices.

A binary forest is a sequence of binary trees. If the sequence is finite
and the trees in the sequence are all finite, then the forest is a finite
forest.

An exposed caret in a binary tree T is a caret in T so that both
leaves of the caret are also leaves of T

The next lemma is a collection of trivial but useful observations.

LEMMA 8.11. The following hold.
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(1) Both the union and the intersection of a family of binary trees
are binary trees, and the union of a family of binary trees is
the smallest common refinement of the family.

(2) Given a finite set V' of vertices in T, there is a smallest finite
tree T rooted at () containing V. If the vertices in V are pair-
wise orthogonal, then V' will be contained among the leaves of
T.

(3) If S and T are finite, binary trees and S refines T, then S\ T
1s a finite binary forest, so that if v; is the i-th leaf of T', then
Sy, 15 the i-th tree of the forest.

(4) Every finite binary tree has at least one exposed caret.

(5) If T" is the result of attaching a caret to a finite binary tree T
at the i-th leaf, then leaves i and i+ 1 of T' are the leaves of
an exposed caret of T".

(6) A binary tree pair (T,S) is the result of a matched binary
splitting (and is thus reducible) if and only if for some i, the
leaves i and 1+ 1 are leaves of a single exposed caret both in T
and in S.

We can use this to say more about multiplication. To multiply tree

pairs (R, S)(T,U) when S # T, we can let V= S UT, produce R’ by
attaching, for each relevant i, the i-th tree of V' \ S to the i-th leaf of
R, produce U’ by attaching, for each relevant j, the j-th tree of V' \ T
to the j-th leaf of U, to obtain the result (R, S)(T,V) = (R, U’).

We give a sample calculation. In (7.1), a prefix set pair was calcu-

ated for z2 which we can turn into a binary tree pair.

000 — 0

, | 001 — 10
Tn = —
07 101 — 110 (KO/>>\)

1 =111
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We then use this to calculate zj as follows.

st =aino=( (%) ()
(L))

()

The first change attaches a single caret (drawn with dotted lines) to
the leftmost leaf of both trees in the first bmary tree pair. The second
change attaches the subtree of two carets <. to the rightmost leaf of
both trees in the second binary tree pair. Finally the “middle trees”
match, and opportunistic multiplication can take place.

REMARK 8.12. Finally, in parallel to Remarks 6.19 and 7.7, one
can think of F' as the set of irreducible, tree pairs where multiplication
is followed by a reduction of the result to an irreducible pair.

It is trivial to build examples with (R,S) and (T,U) both irre-
ducible but for which the process above produces a reducible result.
The inverse of (7,5) is (S,7) so if (7,.5) is not the identity, then
(T, T) = (T,5)(S,T) represents the identity and is not irreducible.
One can build less trivial examples.

8.4. Actions on a tree. There are several ways to think of an
element of f as acting on the complete binary tree 7. The element f
can be given as a tree pair (7, 5) or the corresponding prefix set pair
(A(T), A(S) consisting of the leaf sets of 7" and S. As in Section 7.6.4,
and with o : A(T') — A(S), we have f acting on the Cantor set € by
(ua) f = (uo)a for (u,a) € A(T) x €. Here we can think of € as the
ends of 7. But if we restrict a to 9 = {0, 1}*, then we have an action
of f on all but finitely many nodes of the complete binary tree 7.

We can extend the action of f to all the nodes of 7 by using the
bijection of Lemma 6.9(5) from {0, 1}* to the dyadics in (0,1). If we
use the bijection to regard an element of {0, 1}x as both a dyadic and a
node of T, it is easy to see that the action of F' given above on all but
finitely many nodes of 7 agrees with the action of f on Z[1] N (0,1).
Thus action of f can be extended to all of 7. Note that this action
fails to preserve the parent-child relation in finitely many places.
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8.5. Parenthesized expressions. We briefly mention a way to
view F' as acting on fully parenthesized expressions. Actions on such
expressions will be covered more fully in Section 16.

If Ais a set of variable symbols, then for a € A, the expression a is a
fully parenthesized expression, and if e; and e, are fully parenthesized
expressions, so is (ejez). A correspondence between finite binary trees
and fully parenthesized expressions is hinted at below.

N s (ab) N (albo)) AN ((ab)e)

Clearly pairs, splittings (plain and matched) and so forth can be
defined. Changes of the variable names should make no difference, and
so extra care is needed in defining F' as operations on classes of pairs
of expressions. However, it takes very little space to calculate with
expressions. See Section 16 for many examples of this.

8.6. Vines, deferments and wedges. The following useful no-
tions are easy to define with trees.

DEFINITION 8.13. A tree with exactly one exposed caret is a vine.
Given v € {0,1}*, we use V,, to denote the unique minimal tree con-
taining v. It is immediate that V,, is a vine and that v is one of the
leaves of its only exposed caret. We refer to V,, as the vine determined
by v. A left vine is a vine determined by 0" for some n and a right vine
is a vine determined by 1™ for some n. We will use V,, to denote the
right vine of n carets.

There are many ways to approach the next definition. Given f € F
and a dyadic interval J, we want a new function that “acts on J as f
acts on I = [0,1].” We can extend f to all of R by declaring that it
acts as the identity off I, and then conjugate by an element in Fr that
takes I affinely to J. The following alternative definition gives useful
notation.

DEFINITION 8.14. Let f € F be represented by the tree pair (7, .5)
and let u be in M (equivalently a node of 7). Then f,, the deferment
of f to u, is represented by (V, UuT,V, UusS).

Note that any tree with u as a leaf can be used instead of V.

LEMMA 8.15. The group F' is closed under deferments.

DEFINITION 8.16. If S and T" are binary trees, we define
SANT=0U0SUI1T.

This is the result of attaching S and T' in left-right order to the two
leaves of a caret.
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For f and ¢g in F, we set f A g = fog1 = g1fo where fy and ¢, are
deferments.

REMARK 8.17. For a binary tree T, we have
T = (To/0) A (T1/1)

as a special case of Lemma 8.4. For f and g in F' represented by tree
pairs (P, Q) and (R, S), respectively, we have f A g represented by
(P,Q)AN(R,S) = (PANR,QANS). Note that A : F' x FF — F is an
injective homomorphism whose image is the maximal subgroup of F
consisting of those elements that fix %

9. The group F, II: Presentations

We can now derive presentations for F. The only obstruction to
doing the derivation earlier has been the problem of establishing a
generating set. We do so by using Proposition 6.14.

9.1. Generators.
PROPOSITION 9.1. The group F is generated by {xo,z1}.

PROOF. Let f € F be represented by a binary partition pair (P, Q)
of I where P and () have n elements each. We will induct onn. If n =1
or n = 2, there is only one possible partition and f is the identity. So
we assume n > 3. We will show that after multiplying f on the right
and left by well chosen combinations of xy, 1 and their inverses, the
resulting function can be represented by a binary partition pair having
n — 1 elements each.

If 1 is an endpoint of an interval in P (i.e., the interval [0, 1] was
divided in the creation of P from the trivial partition {I}), then z;'f
is represented by a pair of binary partitions with n elements each and
the number of endpoints of the new first partition in [0, 1] is fewer than
in P. This is illustrated below using rectangle diagrams.

1 3

2 4

Thus after multiplying f on the left by a sufficient power (which
might be zero) of z;* we arrive at an element (which we will continue
to call f) represented by a pair of partitions (which we will continue to
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denote (P,Q)) with n elements each, and where [0, 1] is the leftmost
element of P.

Similarly, after multiplying f on the right by a sufficient power
(which might be zero) of zy we arrive at an element (which we will
continue to call f) represented by a pair of partitions (which we will
continue to denote (P, Q)) with n elements each, and where [0, 3] is the
leftmost element of ().

We then repeat the two paragraphs above but now multiplying f
by a power (possibly zero) of z7" on the left and a power (also possibly
zero) of x1 on the right so that the resulting function (still called f) is
represented by a pair of partitions (still denoted (P, Q)) with n elements
cach, where now [0, 3] and [3, 2] are the two leftmost elements of P and
of (). That is, g is no longer an endpoint of either P or Q).

Lastly, we conjugate the latest version of f by x;' which results
in our final version of f and our final version of (P, () where now the
two leftmost elements of both P and @Q are the intervals [0, 1] and
1, 3. But this last (P, Q) is a matched binary splitting at the leftmost
interval of a pair of binary partitions with n — 1 elements each, and
with leftmost interval [0, 1] in each. O

9.2. An infinite presentation. We have claimed that the finite
presentation (3.2) (copied just below) presents F'.

L] = [agey

We also claim that F' can be presented by the infinite presentation

(3.2) (xo, 11 | [x%xl_lxa xEQ,ml] =1).

(9.1) (o, 21,22 ... | xjo; = x;x;41 whenever i < j).

We show that (3.2) and (9.1) present isomorphic groups. Thus finding
a valid presentation for F' can be done by showing that either (3.2) or
(9.1) presents F.

PROPOSITION 9.2. Sending xoy and 1 in the finite presentation
(3.2) to the generators of the same name in the infinite presentation
(9.1) extends to an isomorphism of the presented groups.

PROOF. The relations in (9.1) can be rewritten as }* = x;,1 when-
ever 1 < j, or equivalently
(92) $;1$i+j$i = Ti4j+1, for aHj > 1.

For all 7 > 2 we have

i—1

(9.3) T; = x]°

and we can turn the relations in (9.3) into definitions of the z; for
1 > 2. If we add the z; with ¢ > 2 with these definitions to the finite
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presentation (3.2), then the two relations in (3.2) can be given different
appearances. The relation
oo gt m] = 1
can become
(x2z7tzs )

(9.4) xp=x; 0" 07 or a7t =2 or a3 = 3.
Similarly [#327 252, 71] = 1 becomes
(9.5) T3 = x4
These replacements are relations in (9.1) so we have an extension to a
homomorphism.

We return to the relations in (9.2). The relations (9.4) and (9.5)
can be conjugated by powers of xj to give all the relations in (9.2) for

j=1and j=2. For k> 3, if we assume (9.2) for all j < k, then we
have

-1 -1..-1 -1
Ty Liqkli = T; Ty p olitk—1Titk—2Ti = Ty g 1 TitkTitk—1 = Titk+1-

Inductively, we have that all in (9.2) hold in the presentation (3.2) with
(9.3) as definitions. Thus the homomorphism is an isomorphism.  [J

9.3. Final arguments. Let F be the group presented by (9.1)
which we repeat here for convenience.

(9.1) F= (o, 21,22 .. | xjo; = x;x;41 whenever i < j)

LEMMA 9.3. There is a homomorphism from F onto F taking xg
and x1 to the elements of F with the same name.

Proor. We look at some behavior of the x; using the graphs in
(3.1) for ¢ = 0,1 and the definitions in (9.3) for ¢ > 2. For i = 0, 1,
we have that the support of x; is (1 —27% 1) and z; has slope % on
(1 =271 1). From (9.3) we see that this holds for all i« > 0. For
t < j, we have the support of z; contained in an interval where the
behavior of zy and x; agree. So 27" = x7° = x;;;. The image of the
homomorphism is all of F' since xy and x; generate F'. U

LEMMA 9.4. The function o on {xz; | i € N} defined by o(x;) = xi41
extends to an endomorphism of F.

PROOF. The relation set in (9.1) is preserved by o. O

We will refer to the endomorphism o of Lemma 9.4 as the shift
endomorphism. At this point it is an endomorphism of F', but once it
is shown that the homomorphism of Lemma 9.3 is an isomorphism, we
can also think of ¢ as an endomorphism of F'.
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We will give two proofs that Lemma 9.3 is about an isomorphism.
One proof refers to the action of F' on I, while the other only considers
the structure of F'. Both make use of a seminormal form for elements
expressed in the z;.

LEMMA 9.5. Fvery element ofﬁ can be expressed in the following
form

(96) $i0xil...‘xikxj:lxjilil...x;)l, iOS"'Sik#jZZ"' 2]0

Note that the expression in (9.6) is not unique since z; = Ty *
and both sides are in the form of (9.6).

PRrOOF. Each relation in (9.1) can also be written in the following
three forms. In each we have 7 < j.

x;lxi = xi:cjjil, x;lxj = :CjJrlsc[l, x;lxj’l = a:j’jlx;l.

The original together with the first above say that positive powers
of x; with low subscripts can move to the left of arbitrary powers of
x; with high subscripts at the expense of raising the higher subscript.
The last two above say negative powers of x; with low ¢ can move to
the right of powers of x; with similar comments.

If w is a word of length n in the z; and their inverses using powers
in {£1}, then let m be the lowest subscript used in w and let p be
the number of appearances of x,, or its inverse in w. We can push all
appearances of 1 to the left and all appearances of ! to the right
without increasing the length of the word. The length may go down
if a generator at some point ends up next to its inverse. The result
is a word in the form x? wyz, for some ¢ + r < p with w; a word of
length no greater than n — p in the x; and their inverses using powers
in {£1} and with all ¢ > m. We can continue the process with w; and
eventually achieve the form (9.6). O

As discussed in Section 3.3 some seminormal forms are useful. The
seminormal form (9.6) has its power, and we will use it in both proofs
that (9.1) is a valid presentation for F'. The first proof establishes that
the form (9.6) can pick out the identity element.

PROPOSITION 9.6. The only word in the x; in the form (9.6) that
represents the identity in F is the empty word. The surjection of

Lemma 9.3 from F to F is an injection and (9.1) is a presentation
for F.

PRroOOF. The second sentence will follow from the first since a word
in the form (9.6) represents the identity of F' if and only if it is in the

kernel of the surjection from F' to F'.
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Let w be a non-empty word in the form (9.6) that represents the
identity in F'. We know that w is the identity in F if any conjugate
or an inverse of a conjugate of w is the identity. So we may assume
that w is of the form 2 w; where p > 0 and w; is a word in x; with
all i > m. This says that 22, = w; . We argue that p > 0 leads to a
contradiction.

Let n be the lowest subscript of an x; that appears in w;. From the
discussion in the proof of Lemma 9.3 we know that the support of z,,
is (1 —27™, 1) and the support of w; is contained in (1 — 27", 1). But

we can also deduce from the definitions x; = xfé "for i > 1 that the
slope of z; at 1 — 27" is 2 and so the slope of z?, at 1 —2"" is 27. With
m < n the equality 27, = w; ! with p > 0 is not possible, even if w; is
empty. U

Our second proof lifts the first result of Proposition 5.12 for F' to F.
This proposition will be useful in the future because the first conclusion
of its statement has already absorbed the work of the seminormal form
argument that is used in the proof of Proposition 9.6.

PROPOSITION 9.7. Every proper quotient ofﬁ is abelian and (9.1)
is a presentation for F.

PROOF. Again we start with a word w in the z; in the form (9.6),
but this time we assume that it is not the identity in F. Let N be the
normal closure of w in . We want to show that o andAxl commute
modulo N. We will use © = v to say that u = v holds in /' modulo N.

Again we can assume that w is in the form 22 w; where p > 0
and w; is a word in the x; with all Az > m. We will use the shift
endomorphism ¢ from Lemma 9.4 of F' that takes each x; to ;1. We
know that 22, = w;' and conjugating both sides by 2 with & > 0
gives 27 = o*(w;'). For any i > m and k > i — m, we have that
z; ok (wi e, = o* 1 (wih). But the o (w;!) are all equivalent to 2,
Thus [2F,,z;) = 1 for all i > m and in fact for all i > m.

The previous argument will be reapplied so we take note that we
have proven that if some 2P, is equivalent to a word in generators of
subscript greater than m, then 2P commutes modulo N with all z;
with ¢ > m. R

If 57 > m, then conjugating z; by z?, yields z;;, in F. But with
(2P x;] = 1, we have z; = x4, and our previous argument shows that
[z, ;] =1 for all i > j.

Now if k > j > m, we have x;lxkxj = Xp4q in ]/5, but with [z}, z;] =
1, we have x; = xj41. From the definitions we have xflg = ngg. But
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conjugating this by x(l)_k gives 1 = x{° and we have proven the first
claim.

For the second we note that the homomorphism of Lemma 9.3 takes
xo and x; of F to the elements of the same name in F and these generate
F and do not commute. O

9.4. PL and smooth actions of F' on the line. Lemma 9.5
and Proposition 9.7 give a representation free way to recognize F. We
make the following a lemma because we will refer to it frequently.

LEMMA 9.8. For a non-abelian group generated by a sequence x; of
elements that satisfy the relations of (9.1), taking each x; to the element
of the same name in F extends to an isomorphism.

We give two applications. The first gives another (and easier?)
proof of Proposition 7.8 and a slight extension. The second gives
smooth actions of F.

Consider the following family of homeomorphisms from R to itself
indexed by 7 € Z.

¢, t<i,
ty; =i +2(t—1i), i<t<i+l,
t+1, i+1<t.

Note that yo agrees with the map of the same name from (7.2). And
again let s : R — R be such that ts =1t + 1.

PROPOSITION 9.9. The groups
Fr = (s,%),
Fri=(s,y;|J €2, =1)
with © € Z, are all equal and are isomorphic to F', and the groups
oy =(y;1j€Z,j>1),
with © € Z are also isomorphic to F'.

Proor. All the groups are not abelian. The relations ysy; = y;Yr+1
hold for all j < k as well as yrs = sy, for all k. Thus the groups Fr
and Fgr >; are all equal. From Lemma 9.8, an isomorphism from Fg >
to F as presented by (9.1) is built by taking s to x¢ and y; to x; for
J > 1. An isomorphism from F>; to F'is built by taking y; to z;_; for
Jj > O

And we have a slight extension of Proposition 7.9.

PROPOSITION 9.10. The elements of F>; are the elements of Fr
that are the identity on (—o0,1].
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Now we can build smooth actions of F'.

PROPOSITION 9.11. There are infinitely differentiable actions of F
on R, R>g and (0,1).

PROOF. The nature of the functions y; in Proposition 9.9 can be
summarized as saying that y; is the identity on (—oo, ], has slope 2 on
4,74 1] and has slope 1 on [i + 1, 00). The relation y,y; = y;yr+1 does
not depend on the nature of y; on [i,i + 1] as long as it successfully
carries [¢, 7+ 1] homeomorphically to [i,7 + 2] preserving order. If yq is
replaced by a smooth homeomorphism z, that equals gy off [0, 1] and is
infinitely differentiable (see the techniques in the beginning of Chapter
2, Section 2 of [110]), then defining z; = s 'zgs’ for i € Z \ {0} gives
a family of functions so that Proposition 9.9 holds if y; is everywhere
replaced by z;. If Fg° is what is obtained by that substitution on Fg,
then FR° can be conjugated to a smooth action on (0,1) by a suitable
modification of the arctan function. O

REMARK 9.12. The following representation of F' appears in Dy-
dak 1977 [63] and is attributed there to Minc. For each n € N the
permutation g, on Z x N is defined by

(J, k), j<n,
(n72k) J=n,
(n,2k+1) j=n+1,
(G—1,k) j>n+1.

The reader can show that x; — g;, i € N, extends to an isomorphism
from F' to the group generated by the g,.

gn(jv k) =

10. Properties, III: from the combinatorics

10.1. The commutator subgroup revisited. We can now de-
scribe the commutator subgroup. It was observed in Section 5.5 that
the set of elements of F' with support bounded away from 0 and 1 is
exactly the kernel K of the “end point slope” homomorphism from F
to Z x Z defined by f +— (log,(0f%),logy(1f")). We can now prove the
following.

PROPOSITION 10.1. The commutator subgroup F' of F' equals K.

PrROOF. We know F’ < K. The abelianization applied to the pre-
sentation (9.1) makes all the x; with ¢ > 1 equal to each other and
trivializes the relations in the presentation. So the abelianization of F’
is Z x Z, and modulo F” all elements of F' are equivalent to words of
the form zg'z}. Under the end point slope homomorphism ¢ of Section
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5.5, the image of x; is (1, —1), the image of z; is (0, —1), and the image
of zf’a} is (m, —(m +n)). So any element of F' not in F” is not in K,
the kernel of ¢. O

COROLLARY 10.1.1. The commutator subgroup of Fr is BPLs(R).

Proor. This follows from Proposition 10.1 and Remark 7.10. [

As mentioned immediately before Proposition 5.13, it is not known
if every non-identity element of F’ is a single commutator. Equiva-
lently, it is an open question if every non-identity element of F' with
support bounded away from 0 and 1 is a single commutator.

10.2. A universal property. We recall the endomorphism o de-
fined by o(x;) = 7,41 of Lemma 9.4. For every z;, we have o2(x;) =
Tiyo = x;7,. Composing endomorphisms right to left, we have o? =
Cy,0 where C,, is conjugation by zy. In order to argue that F is
universal with respect to this behavior, we become more formal.

If a group G has an endomorphism ¢ and an element ¢ so that
¢* = Cyo, then we will say that the triple (G, ¢, g) forms a group with
a conjugacy idempotent. We can make a category whose objects are
groups with a conjugacy idempotent. A morphism from (G, ¢, g) to
(G',¢',¢") is a homomorphism 7 : G — G’ so that n(g) = ¢’ and for all
h € G, we have that no(h) = ¢'n(h).

Recall [144], Page 20, that an initial object in a category is an object
a so that for each other object b there is a unique morphism from a to
b. It is clear that any two initial objects in a category are joined by a
unique isomorphism. We have the following.

PROPOSITION 10.2. The triple (F, o, xy) with notation as above is
an 1nitial object in the category of groups with a conjugacy idempotent.
Further if n is a morphism in that category from (F,o,xq) to some
(G, ¢, q), then either n is an injection, or the image of n is abelian and

¢'(g) = ¢ (g) for all1 <i<j.

PRrOOF. Let (G, ¢, g) be a group with conjugacy idempotent ¢.
For i > 0, let g; = ¢'(g) where we interpret ¢°(g) as g. For i < j
we have

9 959i = ¢'(97 ¢ (9)9)
= ¢'(g7"0(¢' """ (g))g)
= ¢'(¢*(¢" V()
= ¢ (g) = gj1-
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So the relations of the presentation (9.1) for F' are satisfied and
there is homomorphism 7, : F — G taking z; to g; for all ¢ > 0. If  is
a morphism in the category from (F,o,x0) to (G, ®,g), then we must
have 1(z¢) = go, and the requirement that n¢(z¢) = ¢n(zo) says that
n(x1) = é(go) = g1. So n = ny since {xg, 1} generates F.

The last claim follows from Proposition 5.12. U

Note that the uniqueness up to isomorphism of an initial object
means that F' can be discovered by studying groups with a conjugacy
idempotent and noticing that there is an initial one. In fact this hap-
pened, and we will discuss the details in Section 19.

10.3. HNN extensions. See Chapter IV of [141] for basics on
HNN extensions.

Given an isomorphism 6 : A — B between subgroups of a group G,
we can form an HNN extension Gy which is most easily defined if G is
given as a presentation G = (X | R). A new generator ¢ (an element
not in G) is added to G and a relation set S = {a' = 6(a) | a € A} is
formed so that GGy is given as the presentation

Gy = (XU{t} | RUS).

It is easy to argue that S can be restricted to {a’ = 6(a) | a € Y} if
Y generates A. The element ¢ in the above is usually called the stable
letter of the extension (as in [141]). If one of A or B is G, the resulting
HNN extension is usually called an ascending HNN extension.

The shift endomorphism ¢ : ' — F' is an isomorphism between
F and the image of o. If we form the HNN extension F,, we get the
presentation

Fy = (xo,1,...,t | 2] = 341, ot = x;,1, whenever 0 <i < j).

Now sending g € F'tot € F, and x; € F'to xj_y € F, for j > 1
preserves the relations of F. Thus we have a homomorphism from F
to F, which is surjective since all the generators of F), are in the image
and injective since the image is not abelian.

Thus F' is isomorphic to an ascending HNN extension of itself using
o. Another view is that F is the HNN extension of the subgroup
(x; | i« > 1) with stable letter zy. Now (x; | ¢ > 1) is the HNN
extension of the subgroup (x; | i > 2) with stable letter z;, etc. Ken
Brown once commented that if stripping off stable letters in search of
the “core” of a group was an act of stripping off fluff, then F' is all fluff
and no core.
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11. Combinatorics I'V: Forests and the positive monoid

11.1. Introduction. The most important substructure of F'is the
monoid of all products of positive powers of the x; from the presentation
(9.1). We call this the positive monoid of F' and denote it by F'y. The
seminormal form (9.6) shows that every element f of F' has the form
f = pn~! where both p and n are from F,. Note that F, is not related
to the bi-order discussed in Section 4.7.

If a group G has a submonoid M so that every g € GG is of the form
g = pq~ ' with both p and ¢ in M, then we say that G is the group of
fractions of M. Various properties of M follow from this situation. It is
immediate that M is cancellative and for every a and b in M, we have
that a='b = pg~! for some p and ¢ from M. So bg = ap is a common
right multiple of a and b and the monoid M is said to have common
right multiples. This tells us that F'; has common right multiples.

A celebrated theorem of Ore gives a converse in that every cancella-
tive monoid with common right multiples embeds in and generates a
group of fractions of M that is unique up to isomorphism. See Theo-
rems 1.23 and 1.25 of [50] where the vocabulary is somewhat different.
The existence of a group of fractions will be proven in a more general
setting as Theorem 24.2.

If M has common right multiples, then for every a and b in M, we
have the common right multiple ap = bg and a='b = pg~!. Now if M
generates a group G, every g € (G is a word in elements of M and their
inverses which by the calculation just done can be arranged to have
only positive powers of elements of M at the beginning of the word
followed by only negative powers of elements of M to finish the word.

The positive monoid F'. is isomorphic to a monoid of forests, and
so F' is isomorphic to a group of fractions of the monoid of forests.
This will be important in Chapter 4 when complexes are built for the
Thompson groups to act on. Here we will use forests to show that
certain variations in the definition of F' do not change F' even though
those variations will be shown in Chapter 6 to change the groups T’
and V.

A first goal of this section is to gain knowledge of the structure of
F,. Another is to use this knowledge to improve on the seminormal
form (9.6) for elements of ' and get a true normal form. This will
involve relating the view of elements of F' as words in a generating set,
to the view of elements as pairs of partitions, prefix sets, or trees. Even
more analysis of F, will occur when we build the complexes of Chapter
4.
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We will get the improvement over the seminormal form (9.6) by
exploiting what we know about irreducible tree pairs. Since the semi-
normal form (9.6) is about words in the ', we need to relate the
structure of trees in a tree pair to words in a generating set. Uncover-
ing this relation starts with the elements of F, .

11.2. Turning F, into forests. We start with generators.
11.2.1. Generators as tree pairs. The tree pairs for zy and z; are

(11.1) m0:</<\/>\) :1;1:(%/&)

i—1
We defined z; = 21° in (9.3), and we calculate the tree pair for
9 below. We show as dotted the added carets needed to construct the
common binary refinements.

=it = (On s ) (J80 25 ) (4N

()

That the right trees of in z, x; and x4 are all right vines (Definition
8.13) is not a coincidence. The leaves of a right vine V,, that are not
the rightmost are all of the form 1°0 for 0 < i < n. These vertices will
be of particular importance, and in 7 we let v; = 1°0 for ¢ > 0.

In zg, 1 and x4, the left trees are almost right vines. To accomodate
the extra carets needed to depict the left trees of the z;, we will use
Vami,...m, With mp <mg < --- <'my < n to denote the right vine V,, to
which carets have been added at v,,, for 1 <i < k. Now 2o = (V1 , V2),
T = (V2,1, V3) and zp = (‘/},,27 V4)~

Since a binary splitting at the rightmost leaf of V,, produces V1,
we can repeatedly apply matched binary splittings at the rightmost
leaves of the binary tree pair for zy to get xy = (V,0, Voy1) for all
n > 0. Similar statements apply to z; and z».

LEMMA 11.1. For i > 0, we have x; = (Viy14, Vite) = (Vai, Vig1)
for alln > 1.
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PROOF. The second form follows from the first by matched binary
splittings at the rightmost leaf. In the following inductive calculation

Tip1 = Ty Ty
= (Va, Vi0)(Vig1.i, Viga) Vi, V2)
= (Viz2, Vig1,0) (Vig i, Vieo) (Viga,0, Vigs)
= (Vito,it1, Vit1,04) Vit1,0.4, Vie2,0) Vitao, Vies)
= (Vi

i+2,1+1, z+3)

the fourth line has had matched binary splittings done on the first pair
at leaf ¢ + 1 and on the second pair at leaf 0. Since ¢ > 0, leaf i + 1
is at 17710 in Vi, and at 1°0 in Viy10. The reader is invited to draw
corresponding pictures. l

11.2.2. Special subtrees of a tree. From Lemma 11.1 we know that
those elements of F' representable in the form (7, V,,) where T is a finite
binary tree and n is the number of carets in 7" include all the generators
z;. Let I} temporarily denote the subset of those elements of F' that
can be represented in the form (7',V,). We will show F} = F;. To do
so, we look at the anatomy of the tree 7" in the pair (7, V},).

We will make use of figures shown below.

A A

The figure on the left is a stylized representation of a typical tree, and
the figure on the right is decorated to emphasize the presence of leaves.
The picture is not meant to imply that there are exactly three leaves.

Recall that v; = 1°0. Given a finite binary tree T, consider the
infinite sequence ®(7") where the i-th element of the sequence ®; is
defined as

otherwise,

P — {Tvi/vi ’UZ'ET,
;=

where T, /v; is as in Definition 8.3 and - represents the trivial tree.
Since only finitely many v; are nodes of T and each 7T; is finite, this is an

infinite sequence of finite trees where only finitely many in the sequence
are non-trivial. The picture below gives a picture of the beginning of
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the sequence (9;).

Py

LEMMA 11.2. Consider f = (11, V) and g = (15, V,) in FS. The
following are equivalent.

(1) f=ginF.

(2) One of Ty or Ty can be obtained from the other by a sequence
of binary splittings all of which are at the rightmost leaf.

(3) (T1) = @(T2).

PROOF. Assume f = g. If m = n, then the last provision of Lemma
6.16 reinterpreted for tree pairs says that 77 = T,. If m < n, the
matched binary splitings at the rightmost leaf of the pair for f changes
the V,, of that pair to V,, and Lemma 6.16 now shows the altered T}
equals Ty. Thus (1) = (2).

If (2) holds, then f = g since the splittings can be matched by split-
tings at the rightmost leaf V,,, or V,, as appropriate, and the resulting
right vines will have the same number of carets by Lemma 6.16 and be
equal.

If (1) and (2) hold, then ®(T}) = ®(T») follows by noting that
adding a caret to a tree T at its rightmost leaf does not change ®(7).

If (3) holds and m = n, then T} = Ty since ®(T") and the number
of carets in T' completely determine the struture of a finite tree T". If
m < n, then preforming n — m matched splittings on (71,V,,) at the
rightmost leaf produces the pair (77, V;,) where ®(T7) = ®(T3) = ®(13)
and 77 and T3 both have n carets. Thus 7] =75 and f = g. U

11.2.3. Forests. The sequences ®(T") motivate the next definition.

DEFINITION 11.3. A finitary forest is a sequence indexed over N of
finite binary trees so that all but finitely many trees in the sequence
are trivial. After this definition we will only include the word finitary
in formal settings. Finite forests (finite sequences) will come later in
Section 11.6. We let F be the set of finitary forests. Given a forest
U € F, we order the leaves of W so that the leaves of each U, are given
the prefix order and so that all leaves of ¥; come before all leaves of
VU, if ¢ < j. The leaves of ¥ will be numbered in order from IN.
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If f=(T,V,)isin F?, then from Lemma 11.2 we can write ®(f)
for ®(T") and obtain a function from F to F which is well defined and
injective by Lemma 11.2, and which is clearly surjective.

11.2.4. Multiplication. If we want to multiply two elements of FY,
then we start with a pair (71, V,,) (7%, V;,) of binary tree pairs as shown
below.

i e

To proceed with the multiplication, a common refinement of V,,
and T» must be found. To do this the trees in the sequence ®(75) must
be attached to leaves v; = 1°0 of V,,. If there are not enough leaves of
the form v; in V,,, then matched binary splittings of the pair (73, V},)
at the rightmost leaf can be done until there are enough such leaves.
Once that is done, then the ®; can be attached simultenously to the
v; of V,,, and the leaves of T7. Specifically, if \; is the i-th leaf of T,
counting from the leftmost leaf, then ®; must be attached to v; in V,,
and A; in T7.

There is also the possibility that V,, has more carets than T, has
along its right edge. In that case, matched binary splittings of (7%, V},)
along the rightmost leaf can be done until there are enough carets in
the right edge of T5.

The result of the multiplication will be a pair (73, V}) where ®(T3)
is obtained from ®(7}) and ®(73) by attaching the i-th tree of ®(75)
to the i-th leaf of ®(77). We have the following.

LEMMA 11.4. The set I is closed under multiplication and is a
monoid.

We turn the multiplication in F?} into a multiplication on F which
we give a more formal treatment. We make use of the fact that nodes of
a tree are elements of the monoid Mt = {0, 1}*. We define the product
VO of U € F and © € F by giving (VO);, the i-th tree in the sequence.
We set

(11.2) (e); =% u | J ve;

v; €EA(T;)
where the v; are subscripted by the numbering of the leaves in ¥ and
v;0; = {v;u | u € ©;}. In words, we obtain VO by hanging, for each
Jj € N, a copy of ©; on the j-th leaf of U. That each (VO); in (11.2)
is finite is clear, and that it is a tree follows from Lemma 8.5.
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We illustrate a product below. We have numbered the leaves of W
and the roots of both ® and YO and have used dotted lines for the
edges in ©. An infinite sequence of trivial trees is represented by - - -.

v="N 0 N

3 4

(11.3)  e=-"

0 1 2 3

The multiplication given in (11.2) and the fact that the infinite
sequence of trivial trees is an identity makes F a monoid that we refer
to as the monoid of forests. Comparing the multiplication of (11.2) to
the multiplication in F, shows that taking (7,V,,) € F, to ®(T) € F
is a homomorphism. From Lemma 11.2 and the fact that any element
of F is some ®(T), we get the following.

LEMMA 11.5. The assignment (T,V,) — ®(T') is an isomorphism
from FY to F.

For each i € N, we let v; = ®(z;). From Lemma 11.1, each v; is
the forest whose only non-trivial tree is the i-th tree which has only
one caret. It is now obvious that for each ¥ € F the product ¥y is
obtained from W by attaching a caret to the i-th leaf of W. This and
Lemma 11.5 give the following.

LEMMA 11.6. The v; generate F, and the x; generate FY?.
COROLLARY 11.6.1. The monoids F'y and F? are equal.
PROOF. The z; generate F,. U

COROLLARY 11.6.2. For f € F{ = F,, we have that ®(fx;) is
obtained from ®(f) by adding a caret at the i-th leaf of ®(f).

Consequences of Corollary 11.6.2 will be explored in Section 11.4
and then in more detail in Section 23.3.

The observation made in Section 11.1 that F'is a group of fractions
of the monoid F; can be done by a cosmetically different argument.

COROLLARY 11.6.3. Each f € F can be put in the form pn=! with
p and n in the positive monoid Fy of F.
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PROOF. Represent f by a tree pair (D, R). Now with n the number
of carets of both D and R, we have

f = (D’R) = (van)(VmR) = (D7Vn)(R7 Vn)_l

as required. O

11.3. Presentations. We have a parallel to the presentation (9.1)
of F.

PROPOSITION 11.7. The relations xjx; = x;x;41 hold in Fy for all
1 <7j, and

(11.4) (o, 21,22 ... | x;x; = ;241 whenever ¢ < j)

is a monoid presentation for F,. A normal form for elements of F,
in the generators is

Replacing each x; by v; in (11.4) and (11.5) gives a corresponding
presentation and normal form for F.

PRrOOF. The last point follows from the isomorphism between F,
and F given by Lemma 11.5 and Corollary 11.6.1. So we work with
whichever is more convenient.

The relations hold in F', because they hold in F'. That the relations
allow any word in the z; to be put in the form (11.5) follows from the
argument in Lemma 9.5 while ignoring inverses. We argue uniqueness
in F.

If words w and w’ in the form (11.5) using the v; differ, then either
they have different numbers of generators (in which case the corre-
sponding forests have different numbers of carets), or they differ first
from the left where one (say w) uses some v; and the other w' uses
some v; with ¢ < j. The longest common prefix of w and w' is some p
giving a forest ®. Now building the forest for w attaches a caret to ®
at the i-th leaf of ® and building the forest for w’ never does. 0

REMARK 11.8. It is not hard to show that if a group G is a group of
fractions of a monoid M, and (X | R) is a monoid presentation for M,
then it is also a group presentation for G. Thus if one carefully avoids
deriving the presentation (9.1) for F' before deriving the presentation
(11.4) for F, and showing that F' is a group of fractions of F';, then
one could derive (9.1) from (11.4).



11. COMBINATORICS IV: FORESTS AND THE POSITIVE MONOID 69

11.4. Words, trees and a normal form. We add a condition to
the seminormal form (9.6) of words in the z;*' to arrive at a true normal
form. We already have a normal form for elements of F' represented as
pairs of either binary partitions, prefix sets, or binary trees. The last of
these will give a corresponding form for words. Corollary 11.6.2 tells us
how to go from a word in positive powers of the x; to the corresponding
tree pair (T, V). Then given a word

w_$7,0x7,1".x7,kx]lx]l_l..'x]07 Zognnnglk¢j12..-2j07

in seminormal form, we will turn the positive part p = x;,2;, - - - @5,
and negative part ¢~' = (2,2, ---x;)""! into a tree pair (D, R) and
declare that w is in normal form if the tree pair is irreducible. We
will turn this criterion into a condition on the entries in the sequences
(0,71, ,ix) and (jo, j1,- -+ ,J;) that is easy to state and practical to
detect.

11.4.1. Single word to single tree. Given p = x;,x;, - -+ x;, in the
positive powers of the x;, Corollary 11.6.2 builds a forest ®(p) caret by
caret. Then a tree pair (T'(p), V) for p is obtained by building T'(p)
with ®(T'(p)) = ®(p) and letting m be the number of carets in T'(p).
Building T'(p) is done by taking some V,, with n sufficiently large, and
hanging the tree (®(p)); on leaf v; = 01 of V,,. We pause to discuss
the exposed carets of T'(p) since exposed carets are key in a discussion
of irreducible tree pairs.

One possible exposed caret in T'(p) will involve the rightmost leaf
of T'(p) which will occur if n is chosen larger than necessary. If r is the
largest so that (®(p)), is not trivial, then any v; in T'(p) with i > r
will be a leaf of T'(p). This will occur if the n used above has n > r.
If n > r, then i = n is the largest with v; in T'(p), and v; and the
rightmost leaf of T'(p) will be the leaves of an exposed caret of T'(p).
The leaves of this caret will have the same leaf numbers as the only
exposed caret in V,, and the pair (7'(p), V;,,) will not be reduced. From
this point, we assume that n = r, and the rightmost leaf of T'(p) is not
a leaf of an exposed caret. This makes T'(p) refer to a fixed tree and
not a family of trees.

To discuss other exposed carets of T'(p), we take advantage of the
normal form for words in F; and insist that in p = x;,2;, - - - z;,, the
sequence of subscripts satisfies 79 < i1 < --- < 7. We can argue the
following.

LEMMA 11.9. Let p = wz;,x;, -~ x4, with 19 < 43 < -+ < 4, and
let T(p) be as described above. Then the leaf numbers of the exposed
carets in T'(p) are exactly the pairs (i;,1; + 1) for all i; where j =k or
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ij+1 > ij + 2. Further, the pair (T'(p),V,,) where m is the number of
carets in T'(p) is an irreducible tree pair representative of the element
pin F.

ProOOF. With n = r as discussed above, we build T'(p) from V,, by
hanging the trees of ®(p) on the v; of V,,. Excepting the rightmost leaf
of V,,, the leaves of T'(p) are exactly those gotten from the leaves of
®(p). This is true even for the trivial trees of ®(p). Since our choice
of n prevents V,, from contributing to the exposed carets of T'(p), the
exposed carets of T'(p) are those gotten from the exposed carets of
®(p). At the time a caret is added corresponding to x;,, leaves 4; and
i; + 1 are exposed. If now i;41 = ¢; or i;41 = 4; + 1, then one of
those previously exposed leaves has been “covered” by a new caret, is
no longer a leaf, and no longer a leaf of an exposed caret. However if
ij+1 > 1 + 2 (the only remaining possibility), then the exposed pair is
left uncovered and will remain so for the rest of the word because of
the non-decreasing order of the subscripts. The last caret to be added
inevitably contributes an exposed caret. This covers all the cases in
the claim related to exposed carets.

For the last sentence of the lemma, we note that our choice of T'(p)
avoids an exposed caret that uses the rightmost leaf. Since V,, only
has one exposed caret, and that caret uses the rightmost leaf, the pair
(T'(p), Vi) is irreducible. O

11.4.2. Word pairs to tree pairs. We now return to

W= TjgTiy -+ Ty Ty Ty ey, Ao S S F i 2> 00 2 o,

in seminormal form, with positive part p = x;,z;, - - - z;, and negative
part ¢~ ' = (xj,x;, -+~ x;) " . From p, we get (T'(p), Vs), and from ¢, we
get (T'(q), V;). Since we may have s # ¢, let us assume s < t and apply
t — s matched binary splittings to the rightmost leaves of (T'(p), Vi) to
get the reducible (T"(p),V;) that still represents the element p € F,.
Now
w=pg = (T'"(p), V) (Vi T(q)) = (T"(p), T(q))

which might be reducible. However any reducibilty will not involve the
rightmost leaves of T7"(p) and T'(q) since T'(q) has no exposed caret that
uses its rightmost leaf. We can now state the following.

THEOREM 11.10. Fach element f of F' is represented uniquely as
a word in the form

(96) xiol'il...xikxj_llxj_lil...xj_ol’ ZOS Slk#jl Z 2]0
that satsifies the additional requirement

(1) if z; and x;" are present in (9.6), then w1 or mijrll is present.
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PrRooOF. That every f € F' is representable by a word in the form
(9.6) plus (}) follows because we already know that a word in the form
(9.6) represents f. If a word in (9.6) violates (), then in the notation
of the statement, z; and x; ' are present but not x;, ;. The requirement
ir # ji prevents the adjacency of z; and z; ' in the word and so the
subscripts of the non-empty subword u between them are all at least
i + 2. Now applying a relation from the presentation (9.1) removes
z; and x;' and lowers all the subscripts of the subword u by one.
This preserves (9.6), shortens the length of the word, and repeated
applications must ultimately end in a word that also satisfies (7)..

It follows from Lemma 11.9 that a word in the form (9.6) with
positive part p and negative part ¢! will have that (T'(p),T(q)) as
described above, after adjustment to guarantee an equal number of
carets in each tree, is irreducible if and only if () holds. Now the
uniquness of an irreducible tree pair from Proposition 8.9 for a given
element of F' completes the proof. O

11.5. Algorithms.

11.5.1. Words to trees and back. The discussion in Section 11.4 con-
tains algorithms for going back and forth between two forms of repre-
sentation of an element of F: words in the 2" in the seminormal form
(9.6) on the one hand, and binary tree pairs on the other. Also, reduc-
ing a word in the seminormal form (9.6) to the normal form (9.6) plus
(1) is also algorithmic. Thus there is an algorithm behind the bijection
between words in the normal form (9.6) plus () and reduced binary
tree pairs that matches those objects that represent the same element
of F.

The three equalities below illustrate points made above.

2 —2
2 —1
:SU01’3I4$2 x—l frd </<(zi ) %\) .

11.5.2. Multiplying words. From Section 8, we can view F' as a set
of irreducible binary tree pairs with an algorithm to perform multipli-
cation that ends with a reduction of a tree pair to an irreducible pair.
Similarly F' can be viewed as a set of words in the normal form (9.6)
plus (1) with an algorithm for multiplication that consists of concan-
tenation followed by a reduction to the normal form.
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As an example, we compute the square of xoryr4w; w3 7. Note
that this is in the normal form (9.6) plus (). We have
(zozozszs txy e h)?
=(wowomywy twy tw] ) (womomamy gt t)
:x3x3x5xg1w;lmglxgmxglmglxl—l
::B(Q)xga:g)xglxglzglxl—l
:xguxglazfxl’l
The last transformation eliminates a violation of (f). The reader can
do this calculation using tree pairs. Calculating with words can take
less space, but not always less time. It is also interesting to see that
intermediate steps in the calculation do not have to correspond pre-
cisely.
We take this opportunity to formally and belatedly announce the
following. The point could have been made many times before this.

PROPOSITION 11.11. The word problem for F' is solvable.

11.6. More fractions for F. We know that F' is the group of
fractions of F; and thus also of the monoid of finitary forests F. This
view of F' can be turned into a partition pair view of F-o by taking a
finitary forest ® € F as a set of instructions to partition [0, 00). The
i-th tree ®; tells how to partition the interval [i,7 + 1].

The group F' can also be represented by pairs of finite forests. In
some sense this has already covered in Lemma 5.5. We review this
here because this variation of an approach to F' does not change the
isomorphism type of the resulting group, but we will see in Chapter 6
that a parallel variation changes the isomorphism types when applied
to T and V. All the work below will be left to the reader.

DEFINITION 11.12. A finite forest is a finite sequence of finite trees
with the leaves ordered as for a finitary forest (Definition 11.3). The
forest is binary if all the trees in it are binary.

From this point all trees and forests will be binary.

Let v = (Ty,...,T)) be a finite binary forest. Then the finitary
forest W associated to 1) is the concatenation of sequences (T, . .., Tx—1)
followed by the infinite but finitary forest ®(7}) where ®(T}) is as
described in Section 11.2.2.

Let an integer r > 1 be fixed. We consider finite binary forests of
length r. That is, r is the number of trees (or the number of roots)
in the forest. On such objects, one can define binary splittings and
binary refinements, and on pairs (¢1, 0, 12) with o a bijection from the
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leaves of 11 to those of )5, and one can define matched binary splitings,
and corresponding equivalence classes. As usual, if ¢ is omitted it is
assumed to be the unique order preserving bijection. We denote the
set of equivalence classes by F5,. The notation anticipates Chapter 6
where the 2 emphasizes the binary aspect.

The reader can define the usual opportunistic multiplication to turn
F,, into a group and use the finitary forest associated to a finite forest
to prove the first claim in the proposition below. For the second claim,
a group Fr can be defined on classes of pairs of finitary, binary forests
in the usual way. The second claim summarizes the comments at the
beginning of the section.

PROPOSITION 11.13. The group Fy, is isomorphic to F', and also
naturally isomorphic to the group Flo,. The group Fx is isomorphic
to I, and also naturally isomorphic to the group F>.

The extraction described above of a finitary forest from a finite
forest shows how to conjugate Fjy,) to F>o in a manner similar to that
in Remark 7.10.

We illustrate below the forest pair for the element corresponding to
To when r = 2.

(A A
The reader can work out the pairs for xy for F5, when r > 3. The

forest pair in F% is made obvious by the element y, of (7.2) and the
element 1y of Lemma 11.6.

12. The group T’

As for F there is a definition of T" as a group of piecewise linear
maps, and also definitions that are more combinatorial. We will start
with the PL definition.

12.1. The PL definition. We first need to discuss some structure
on the circle.

DEFINITION 12.1. We use S* to denote R/Z and refer to it as
the circle of length one. We use Homeo, (S') to denote the group of
orientation preserving self homeomorphisms of S!. Let p : R — S!
be the corresponding projection map. A lift of & € Homeo, (S') to R
is some h € Homeo, (R) so that for all ¢ € R, we have thp = tph.
The group PL,(S') is the subgroup of Homeo(S!) whose lifts are in
PL,(R). We can refer to an element of S' as being dyadic (being in
Z[3]) if its representatives are dyadic.
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Note that all lifts of the identity in Homeo, (S*) are integral powers
of the translation s € Homeo,(R) defined by ts =t + 1. Given two
different lifts of an h € Homeo  (S*), one will equal the other composed
with an integral power of s. Every lift of an element of Homeo, (S')
commutes with s.

DEFINITION 12.2. The group T is the subgroup of PL,(S") satis-
fying the following.
(1) At every point where h € T has a derivative, it acts on an
open neighborhood of the point as t — 2"t +b with n € Z and
be Z[1].
(2) The breakpoints of h € T are those points where h’ does not
exist, are finite in number, and are elements of Z[3].

Note that the set of breakpoints can be empty since T" contains all
rotations (translations) of S* by dyadic rationals. The careful wording
of (1) in the definition is to rule out rotations by amounts that are not
dyadic rationals. We could have given a less careful wording of (1) and
added a third requirement that the dyadic rationals be preserved as a
set. It is left to the reader to verify that elements of 7" do preserve the
dyadics and that T is a group under composition.

12.2. Elements and multiplication. Below we show the graph
of two typical elements of T' where we treat S' as the interval [0, 1]
with the points 0 and 1 identified. The first has breakpoints at 0,

and %. The second is rotation by % and has no breakpoints.

1
2

oy |

The fact that T contains all rotations by dyadic rationals gives a
quick look at some of its structure.

PropPOSITION 12.3. The following hold.
(1) For each dyadic rational d, the subgroup T, of T that fizes d
15 1somorphic to F', and all these Ty are conjugate in T
(2) Every element of T is a product fg where f € Ty and g is a
rotation by a dyadic rational.
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(3) Ewvery element of T is a product hj with h € Ty and j € Ty for
some dyadic rational d.

(4) Every element of T is a product of no more than two elements
each of which has fixed set with non-empty interior.

(5) For each dyadic d € S*, the group Ty is mazimal in T.

PROOF. (1) That T} is isomorphic to F' is immediate from the def-
initions of T and F. Now Ty is a conjugate of T, by a rotation of S!
by d.

For (2-4), let k € T not be the identity.

(2) If Ok # 0, then Ok is a dyadic rational d. With g rotation by d,
we have f = kg~ € Ty,

(3) Again if 0k # 0, we now pick some dyadic rational d different
from both 0 and 0k. Using the transitivity properties of T, and the
fact that all of 0, Ok and d are dyadic rationals, there is an element
j € Ty that carries 0 to Ok, and we have h = kj~1 € Ty,

(4) With k not the identity, there is an open set U with Uk disjoint
from U. By choosing U small enough we may assume that the closure
of U U Uk misses an open set W in S!. Let d be a dyadic in W. By
the transitivity properties of Ty, there is some ¢ in T} that is fixed on
a neighborhood of d in S* and that agrees with k on a non-degenerate
interval J in U. Now h = kg~ ! is the identity on J and k = hg.

(5) Since all T, are conjugate, so we can work with Ty. If G < T
contains 7y and an element h with d = 0h # 0, then G contains T,
and by the transitivity of 7 on the dyadics, G contains all T with s
dyadic in S'. Now we are done by (3). O

We skip several ways to represent elements of T and go directly to
pairs of trees. The reader can use the material of Sections 6 and 7 to
derive other representations.

Definition 8.6 gives a tree pair as a triple (7', 0, S), but this overuses
the letter T in a section on the group T'. So we will consistently switch
to (D, o, R) where the binary trees D and R are to suggest “domain”
and “range.” For the group 7', there are more possibilities for the
bijection o from A(D) to A(R) than there are for the group F, but the
choices are still somewhat limited. We give the specifics.

DEFINITION 12.4. A marked binary tree pair is a binary tree pair
(D, o, R) as in Definition 8.6 with the bijection o : A(D) — A(R) re-
stricted as follows. With n = |A(D)| = |A(R)|, and u; and w; denoting
the i-th leaves, respectively, of D and R, there is a k with 0 < k < n
so that for all ¢ with 0 <7 < n, we have u;0c = w;,, where the addition
in the subscript of w is modulo n.



76 2. A FIRST LOOK AT THE FIRST THOMPSON’S GROUPS

In words, the bijection ¢ is rotation by k. It is useful to see this as a
piecewise order preserving map that interchanges the relative positions
of the two intervals consisting of the first n — k elements and the last
k elements.

The only information beyond D and R in a marked binary tree pair
that is needed is the value of k. This will be reflected in our drawings of
pairs of trees that represent elements of 7. In the notation of Definition
12.4, it suffices to know which leaf of A(R) is upoc = wy. In a drawing,
we can indicate this with a “bullet” e at the leaf wy. Below we show
marked binary tree pairs for the two elements shown in (12.1).

N ONION B VOV 0N

Note that both pairs in (12.2) are irreducible.

The figures in (12.2) should justify the terminology “marked binary
tree pair.” Note that elements of ' can be represented this way by
putting the mark on the leftmost leaf of R. This repeats the fact that
the subgroup of T that fixes 0 is isomorphic to F.

We describe a matched binary splitting of a marked binary tree pair
(D, o, R) with u;, w; and k as in Definition 12.4 to yield (D’,o’, R').
If the splitting of D is at the leaf u; of D, then the splitting of R
is at u;0 = w;y. The bijection o’ agrees with o off u; and it takes
1;0 to w10 and u;1 to w; 1. The marked vertex of R’ depends on
whether the splitting of D is at the leftmost leaf ug of D or not. If the
splitting of D is at the leftmost leaf ug, then the marking of R’ is at
wy0. Otherwise the marking of R’ is at the same leaf as the marked
leaf of R.

Starting with the marked tree pair on the right in (12.2) for rotation
of St by }1, the pair below on the left is a mathched binary splitting at
up and the pair below on the right is a matched binary splitting at us.

o (O (On 4

Multiplication is opportunistic, as expected. Given two marked
binary tree pairs (D, 01, R1)(Da, 09, Rs), the result is (Dq, 0109, Ry) if
Ry = D,. Otherwise multiplication is done by doing matched binary
splittings to get (D}, o, R}) and (D}, o), R}) where R} = D} (ignoring
the marking) to give the result of the multiplication as (D7, o}0%, R}).
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If (12.3) is taken as a multiplication problem then the result is

R LR) (A )

after reduction. Note that during the reduction the leftmost exposed
caret of the left tree “cancels” the rightmost exposed caret of the right
tree, and vice versa. Of course this particular calculation simply verfies
that the square of rotation by }l is rotation by %

We observe that if (D, o, R) represents an element f € T, then
(R,07!, D) represents f~!. The inverses of the pairs in (12.2) are as
below. The identical trees in each pair do not illustrate the interchange
of D and R, but that should by now be less important than the change
in the marking.

- (O0N) KON

LEMMA 12.5. FEvery element of T can be represented by a marked
binary tree pair, every marked binary tree pair represents an element
of T, and two marked binary tree pairs represent the same element of
T if and only if they are related by the equivalence relation generated
by matched binary splittings.

PRroOF. For the first claim both elements of F' and rotations by
dyadic rationals are representable by marked binary tree pairs, and so
their product can also be so represented. The second claim follows
because the resulting action fits the definition of elements of T". The
last claim is clear in one direction, and the details of the other direction
are left to the reader guided by the material in Sections 6 through 8. [J

Details for the following parallels to statements in Sections 6 through
8 can be supplied by the reader.

LEMMA 12.6. Fvery element of T has an irreducible representative
(that is minimal as measured by numbers of carets) by marked binary
tree pairs from which all other representatives are obtained by matched
binary refinements. The only representatives of the identity of T are
of the form (D, o, D) where o is the identity and the irreducible repre-
sentative of the identity uses the trivial tree.

REMARK 12.7. There is a smooth, faithful action of T" on the circle.
See [82], Theorem A.
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12.3. Finite subgroups.

PROPOSITION 12.8. Every finite subgroup of T is cyclic, and every
cyclic group is isomorphic to a subgroup of T

PrOOF. The first claim has little to do with T and applies to
Homeo, (S'). Let H be a finite subgroup of Homeo, (S') and let ¢,
be a point in S. The orbit ¢, - H is finite. Let to,t1,...,t,—1 be a
listing of ¢- H in counterclockwise order around S*. There is an h € H
with toh = t;. Since h takes the interval (y,¢;) in S' that contains no
other points of ¢- H to an interval with similar behavior, it follows that
t1h = ty. Inductively t;h = t;;1 treating arithmetic on the subscripts
modulo n.

If A does not generate H, then let g be some element of H that is
not a power of h. We have tgg = t; for some i and togh™" = t,. But
gh~" is a non-identity element of Homeo, (S!) with a fixed point and
must have infinite order. This contradicts the fact that H is finite.

For the second claim, with V,,_; the right vine of n — 1 carets and
n leaves, the marked binary tree pair (V,,_1,0,V,_1) as depicted by

EE

generates a copy of the cychc group of order nin T. U
12.4. Rotation numbers.

DEFINITION 12.9. Given h € Homeo, (S), a lift & in Homeo, (R)
and t € R, then the rotation number of h is

(12.6) 7(h) = [ lim l(tizn - t)] mod Z.
[n|—o0 M

The defined term makes no mention of ¢ because the quantity de-
fined does not depend on t. See Chapter 11 of [121] for a proof that
7(h) exists for all £ € R, is independent of ¢ and of the choice of lift of
h, and is an invariant of conjugacy.

In a later edition we will prove that all rotation numbers of elements
of T are rational. For now we only establish a converse.

LEMMA 12.10. For every r € QN [0,1), there is an element of T
whose rotation number is r.

PRrROOF. Let r = ™ in reduced terms with 0 < m < n in N and
consider f = (V,,_1,0,V,_1) as depicted in (12.5) of Proposition 12.8.
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The orbit S of 0 in S' under h = f™ contains n points. The elements
s; of the preimage S in R of S under the projection p: R — R/Z = S!
can be indexed by Z in increasing order so that sy = 0. Each half open
interval of length one in R contains exactly n points of S.

There is a lift h of h so that the action of & on the indexes of the
elements of S is i — i 4+ m. Now the action of A" on the indexes is as
i+ i+mnk. But spn, —so = mk and the limit in (12.6) is ™ =r. [

12.5. Transitivity. The transitivity properties of F' are given by
Lemma 5.3. We give a straightfoward adaptation for 7.

LEMMA 12.11. Let Iy < I} < --- < I,_1 be a sequence of single
points and closed intervals with non-empty, pairwise disjoint interiors
in [0, 1] with the single points and the endpoints of the intervals in Z[3].
Let m act on k ={0,1,...,n—1} as addition of a constsant modulo n.
Let Jy < Jp < --- < J,_1 be similarly described so that J;; is a point if
and only if I; is a point and intervals Jir and Jiry1 share an endpoint
if and only if I; and I; 11 share an endpoint. For each interval I;, let
g; be an element of PL, (I) whose restriction to I; has image Ji; and
which satisfies Definition 12.2. Then there is an element of T taking
each I; to J; and whose restriction to each interval I; equals g;.

12.6. Simplicity.
PROPOSITION 12.12. The group T is simple.

PRrROOF. Let f € T not be the identity in a normal subgroup N of
T. There is an open U in S! so that Uf is disjoint from U and there
is a dyadic d € U. In T}, there is an element g whose support is in U
soc=|g,f] = g '¢g is in N and is not trivial since g and g have
disjoint support. Also d is not in the support of g by choice and not in
the support of ¢/ which is in Uf. So c is in Ty. By Proposition 5.12,
N contains the commutator subgroup of T; which by Proposition 10.1
consists of all elements of T' that fix an open neighborhood of d.

Since T is transitive on the dyadics in S, we know that N contains
all elements of 7" that fix an open set containing a dyadic. But every
open set contains a dyadic, so N contains all elements of 7" whose fixed
set has non-empty interior. We are done by (4) of Proposition 12.3. [

12.7. Free subgroups. We will find a non-cyclic free subgroup of
T. The argument used, known as the “ping-pong” argument, is usually
attributed to Klein [125, §III, 16] or Fricke and Klein [74, 811, 3.8].

There is an element xeT ﬁxed at 0 and = and no other point and
that takes 16 10 15 and 15 to 15 Conjugatlng x by rotation by 2 7 gives
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y € T fixed on % and % and no other point, and that takes 1% to % and
3 13
16 O T6-
i LA 1
16 16
e L
16 16
1 1
2 0 2 0
9 15
16 16
11 13
3 = 3 2
: 16 . 16

PROPOSITION 12.13. The subgroup (r,y) < T is freely generated
by x and y.

PROOF. Let w be a non-trivial, freely reduced word in z, y, z*

and y~'. We will show that gw # £.
(79 ~1_ _ (15 1 _ (11 13 -1 _(3 5
Let X = (1_6’ 1_6>"X - = (Ea E)a Y = (1—67 1—6) and Y = (1—6.7 1—6)
where the exponent is purely formal. The interval notation (a,b) is to
be interpreted as those ¢ with a < ¢ < b in counterclockwise order on
1

the circle. None of these four sets contains 3 Note that z takes all

points not in X! into X, the closure of X, ="' takes all points not
in X into X—! and similar statements for y*! and the intervals Y and
Y1

If a is the last letter of w, then the claim is that éw isin X ifa = x,
in Xtifa=2"1,inY ifa =1y, and in Y1 if a = y~!. That is %w is
in the capitalized version of a. It is true if |w| = 1 and if w = w’a for
non-empty w’, then a corresponding statement is true for %w’ and the
last letter of w’. The last letter of w’ is not a™! and so fw’ is not in

1

the capitalized version of a~!. By the previous paragraph %w = sw'a

is in the claimed interval. O

REMARK 12.14. The method used in the proof of Proposition 12.13
is standard and worth demonstrating. It is even easier to show that
T contains an isomorphic copy of PSL(2,Z). This is isomorphic to
the free product of Z/3Z and Z/2Z [4] and contains non-abelian free
groups [162]. The generators in 7" are

a= (0N BN
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A word w in {«, 8} can be reduced to an alternation of a*! and 3. The
reader can show that if such a w starts with o*!, then [0, 5] is taken to
a strictly shorter interval by w, and that if w starts with 3, then w = 3
and is not the identity, or [%, 1] is taken to a strictly shorter interval.
Theorem 4.11 shows that PLF, (R), the group of orientation pre-
serving PL self homeomorphisms of R with only finitely many break-
points, contains no subgroup isomorphic to the free group on two gen-
erators. We now have the importance of the finiteness assumption.

COROLLARY 12.14.1. There is a subgroup of PL,(R) isomorphic
to the free group of rank 2.

PrROOF. Let x and y be as in Proposition 12.13, and let & and y
be any lifts of x and y, repsectively, to R. The elements & and § both
commute with the shift map s where ts = t 4+ 1, so every element in
(Z,7) commutes with s. It follows that  — x and § — y extends to
a well defined homomorphism from (Z,y) onto (z,y). Since z and y
freely generate the latter, £ and § must freely generate the former. [J

12.7.1. An application to F. A group G satisfies a law if there is
a non-identity element w in some group Fjs free on a finite set S so
that every homomorphism from Fs to GG has w in its kernel. Using
the standard embedding of a finitely generated free group into the free
group of rank 2 (see Proposition 3.1 in [141]) we can assume S has two
elements.

PrROPOSITION 12.15. The Thompson group F' satisfies no laws.

Proor. We will work within the isomorphic copy Fr of F' from
Section 7.6.1.

Let w be a non-identity element in the free group (z,y) from the
proof of Corollary 12.14.1, and note that we can insist that the lifts
and ¢ have infinitely many fixed points each. Let n be the length of
w in {Z*, g1} and let p;, 0 < i < n, be the prefixes of w with p, the
empty word, and p, = w. Since w is not the identity, there is at € R
for which tw # t and let t; = tp;, 0 < i < n.

Let K be a compact interval that contains all the ¢;. There is a
compact interval L containing K, and elements Z’ and ¢ in F,, that
agree with  and § on K and are the identity off L. Sending Z to &’
and ¢ to ¢ is a homomorphism A from (z, ) into F,, and we let w’ be
the image of w under h. Our construction gives tw' = tw # t and w is
not in the kernel of h. 0
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12.8. A finite presentation. As with F' we find a seminormal
form for elements of T'. And like Proposition 9.6 for F', we show that
the seminormal form is powerful enough because it only has one repre-
sentative for the identity element.

We identify F' with T and regard the usual generators xgy and
of I’ as elements of T, C 7. We give the name 7 ; to the rotation of

1
Sl by 9
To,1 = </\ ) /\) 5
since it switches (permutes) the two halves of S'.
Since {z, z1} generates Ty, Item (5) of Proposition 12.3 gives that
{x0, 1,701} generates T'.
Our seminormal form will be based on the following.

LEMMA 12.16. The group T is the disjoint union of F' and F'my1F'.

PRrROOF. The sets are disjoint since every element of F fixes 0 and
no element of F'my 1 F does. Let g € T not be in F. Since 0 # 0g € Z[%],
there is f € F with Ogf = % So 0gfmes = 0 and gfme, = f € F.
Now g = f'mo1f~' € Fro1F. O

We say that an element of 7" is in seminormal form if it is expressed
either as f or fmyf’ with f and f’ in F. From the lemma, the only
seminormal form for the identity of T" is the identity in F'.

LEMMA 12.17. The group F is the disjoint union of the three sets
S={feFlsf=3}
SwoS={f € F|3f >3},
Sug'S={feF|3f <3}

PRrROOF. The sets on the right clearly partition F', so we need to
show that they are equal to the sets on the left. The first is a definition
and the argument for the third is similar to that of the second. In the
second, the left side is clearly contained in the right. For the other
containment, if f € F has %f > %, then some g € S has %fg = %
making ¢’ = fgz;"' an element of S. So f = ¢'zog™' € SxS. O

To define the relations for 7', we will use the operation A on F' from
Definition 8.16 where f A g is the composition of fyg; of deferments of
f and ¢g. Note that 1 = 1 A zy, and that the image of A is S.

With X = {x¢, x1, 71}, we let R consist of the following relations.

(1-2) The two defining relations for F' from (3.2).

(3) Wg,l =L
(4) 7T071(1 AN ZL‘0)7T071 =X A1,
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(5) 7T071(1 VAN 1’1)7T071 =T A 1.
(6) (7T071.CC0)3 =1.

PROPOSITION 12.18. A presentation for T is (X | R).

PRrOOF. The validity of the relations (1-5) in T is clear and (6)
is a straightforward check using tree pairs. The more useful forms
of relation (6) for us are mo womo1 = Ty Mo Ty, and o1y Mo =
ToTo,1To since in each, replacing the left side by the right side reduces
the number of appearances of 7 ;.

In the following f, f" and f” will be understood to represent ele-
ments of F', and for various 7, s; will be understood to represent ele-
ments of S.

Since X generates T, relation (3) says that every element of T
reduces to a word consisting of alternations of words in {xg,x;} and
single copies of 7y ;. We are done if we can reduce such a word to our
seminormal form of f or fmg;f’. This will follow if we can reduce an
arbitrary word to one having no more than one appearance of 7y ;. To
do this we show that every 7 fmo1 can be replaced by some f'mg 1 f".

Since o and x; generate F', that my; normalizes S follows formally
from (4) and (5). So we only need to consider f ¢ S. If f = 512059,
then from the first alternate form for (6), we get
's5)
for some s7,s5, € S which contains fewer appearances of m; than
To1fmo1. A similar argument holds if f € Szy'S using the second
alternate form of (6). O

7T0,1(5133052)7T0,1 = (3/13351)7%,1(370_

Relation (6) is often called the hexagon relation and an efficient
verification using parenthesized expressions is given in (16.6).

13. The group V

Section 7.6.4 presents F' as acting on the Cantor set €. This also
applies to express 1" as a group acting on €. It is easy to tweak the
machinery and the definitions and define V' as a subgroup of the self
homeomorphisms of €. In spite of this, we will work a bit harder to give
a different definition of V', and then work back to a structure similar to
that of F' and T'. We do this because we wish to emphasize the strong
relationship between Thompson’s groups and self similar structures.

We will never give a strict definition of a self similar structure, but
for now the Cantor set € will serve as a typical example. It has two
halves, each of which is “identical” to the whole. From this we will
arrive at V.
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13.1. Building V. Recall that the set {u€ | u € {0, 1}*} is a basis
of clopen sets for the topology on the Cantor set €, and that we refer
to u€ with v € {0,1}* as the cone at u. The following is mostly a
translation of Lemma 7.2 and Corollary 7.2.1. Details are left to the
reader.

LEMMA 13.1. Let C be a cover of € by cones. Then the mazximal
elements of C' under containment form the unique minimal subcover of
C, and this subcover consists of finitely many pairwise disjoint cones.

A set {ur €, us€, . .. upC} is a cover of € by pairwise disjoint cones
if and only if {uy,us, ..., ux} is a prefix set.

13.1.1. The one-sided shift. Consider the map o : € — € acting
on the right that deletes the first letter of each w € €. Specifically
(Ou)o = (lu)o = u for all w € €. The map o is two-to-one and is
usually referred to as the one-sided shift on {0,1}*. The adjective full
is often applied since the domain is all of {0,1}* rather than some
invariant subspace. We can also refer to ¢ as the doubling map. The
map o is interesting dynamically since any element of € of the form
u’, u € {0,1}*, (i.e., is periodic) has a finite orbit under o, and the
periodic elements of € are dense in €.

After defining terms, we will state that the Thompson group V' is
the unique group of homeomorphisms from € to itself that are deter-
mined by the local behaviors generated by o. In the terminology (to
be defined below) of symbolic dynamics, the Thompson group V' is the
topological full group of the full one-sided shift on {0, 1}“.

13.1.2. Groupoids of germs. In what follows, we only give the gen-
erality that we need.

DEFINITION 13.2. A groupoid is a category in which all morphisms
are isomorphisms. A groupoid of germs of a topological space X will
have the elements of X as objects and the morphisms from x € X to
y € X will be a set of invertible germs of local homeomorphisms from
x to y. An invertible germ from x to y is an equivalence class of home-
omorphisms h with zh = y, each with domain some open set about x
and codomain some open set about y. Two such homeomorphisms are
equivalent if they agree on some open set about x. The groupoid Gx
is the groupoid of all invertible germs on X. The groupoid Zx is the
groupoid of all germs on X represented by identity homeomorphisms.
If A is a set of morphisms in Gy, then G4, called the groupoid generated
by A, is the smallest category in Gx containing A.
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LeEMMA 13.3. If X is a topological space and A is a set of morphisms
i Gx, then G is Ix together with all compositions of elements of A
and their inverses.

PrOOF. The nominated collection of morphisms contains all iden-
tities, and is closed under composition and inversion. O

DEFINITION 13.4. A local homeomorphism on a topological space
X is a continuous function f : X — X so that for each z € X, the germ
of f at x is an invertible germ. If S is a set of local homeomorphisms
on X, then Gg is the groupoid generated by the set of germs of the
elements of S. If S consists of one local homeomorphism f, we will
write Gy for Gg.

13.1.3. Topological full groups.

DEFINITION 13.5. If G is a groupoid of germs on a topological space
X (i.e., Ix € G C Gy), then the topological full group of G is the set
of those h € Homeo(X) all of whose germs are in G.

13.1.4. A definition of V.

DEFINITION 13.6. The group V is the topological full group of G,
where o : C — C is the one-sided full shift on on {0,1}* (the doubling
map on C).

We must now reveal some of the structure of V' and relate it to the
structures of F'and T'. In particular, we will work to prove the following
parallel to Lemma 12.5 which will give a mechanism for multiplication.
The proof will be in Section 13.1.6. The development contains no
surprises.

We continue to use D and R for domain and range as we did for
the group T'.

PROPOSITION 13.7. FEvery element of V' can be represented by a
binary tree (prefix set) pair (D,o, R), every binary tree (prefiz set)
pair represents an element of V, and two binary tree (prefix set) pairs
represent the same element of V' if and only if they are related by the
equivalence relation generated by matched binary splittings. Conversely,
every binary tree (prefiz set) pair (D, o, R) with o an arbitrary bijection
represents an element of V.

In the above statement, partitions of intervals are not mentioned
as they are rarely used. Instead of binary partions of I = [0, 1] into
dyadic closed intervals [a, b], one would use binary partitions of [0, 1)
into dyadic half open intervals [a, b).
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Before we start the process of proving Proposition 13.7, we state a
straightforward corollary.

COROLLARY 13.7.1. The Thompson groups F' andT" embed in V.
13.1.5. The germs of G,.

DEFINITION 13.8. Given u and w in {0, 1}*, the rigid cone map
Ouw » U€ — w is defined by (ua)oy,, = wa for all a € €.

The following lemma is immediate. The second provision follows
from the fact that given u € {0, 1}*, the cone u€ is the disjoint union
(coproduct) of (u0)€ and (ul)€. This provision supplies the crucial
fact that we need from the behavior of a coproduct.

LEMMA 13.9. (1) Given u, w and s in {0,1}*, the restriction of
the rigid cone map u€ — w€ to (us)€ is the rigid cone map (us)& —
(ws)€.

(II) Given a function f : € — €&, the restriction of f to u€ is
the rigid cone map to some v€ if and only if for each i € {0,1}, the
restriction of f to (ui)€ is the rigid cone map to (vi)C€.

The relevance of the cone maps is the following.

ProproOSITION 13.10. The set of germs in the groupoid of germs
generated by the full one sided shift o on {0,1}¥ is exactly the set of
germs represented by rigid cone maps oy, : u€ — v& with w and v in
{0,1}*. Specifically, the cone map o, represents a germ in G, at at
each element of uC, and a germ in G, at w € € is represented by a
rigid cone map on some u€ for some prefiz u of w.

PRrROOF. Given v € € and a finite prefix of v in the form au with
a € {0,1}, then the germ of o at v can be represented by the rigid
cone map from (au)€ to u€. The inverse of such a germ is represented
by a rigid cone map taking u€ to (au)€ for some a € {0,1}. Thus a
composition of k germs of ¢ and their inverses rigidly takes some u€
with the length of u at least k to some u'€ where v’ is obtainable from
u by k deletions and/or insertions of single symbols at the beginning
of the word. Thus given a v € €, a germ in G, at v is represented by
some rigid cone map defined on u€ where u is a sufficiently long prefix
of v.

Conversely, given any w and " in {0, 1}*, we can build «’ from u by
the blunt technique of deleting all the symbols from u by germs of o
and then building «’ by the properly chosen inverses of germs of 0. [
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13.1.6. Proof of Proposition 13.7.

Proor. For f € V and v € €, from Proposition 13.10 there is
a prefix u of v so that u€ is the domain of a rigid cone map that
represents the germ of f at v. Choosing such a domain for each v € €
gives an open cover of € and from Lemma 13.1 there is a finite subcover
{u1 €, us€, ..., u,€} of pairwise disjoint cones. Since each is a domain
of a rigid cone map that represents a germ of f we have that for 1 <
1 < k, there is a w; so that f takes u;€ rigidly to w;€, and further that
{w1 €, we€, ... wr€} is a cover of € by pairwise disjoint cones.

The two sets U = {uy,...,ux} and W = {wy,...,wx} are both
prefix sets by Lemma 13.1. However, the indexing does not necessarily
reflect the prefix order. Thus f is represented by a prefix set pair
(U,0,W) where u;o0 = w; and the bijection ¢ does not necessarily
carry the prefix order of U to that of W. Now there is a corresponding
binary tree pair (D, o, R) = (Ty, o0, Tw) where we have overused the
symbol o. (The notation is from Lemma 8.8.)

The claim about the pairs that represent the same element is argued
as in the first part of the proof of Proposition 6.17 with appropriate
minor modifications. Finally the converse follows because the germs are
seen to behave correctly from the first provision of Lemma 13.9. 0

Since the bijection o in (D, o, R) can be arbitrary, the typical way
to represent an element graphically as a pair of trees is to number
the leaves of D and R so as to show the action of o. It is somewhat
customary to number the leaves of D consecutively, but that is not
necessary. It is also not necessary to use numbers. Two examples
follow that represent the same element.

2 a
(13.1) m% m%
1 2 3 4 T a b Y c v

1 4
This example is fixed on an open subset of €.

The machinery of binary splittings and refinements, matched binary
splittings and refinements is as in Section 6.2 for binary partitions and
later sections for prefix sets, trees, and finally Section 12.2 for T. We
copy Lemma 12.6 changing 7" to V.

LEMMA 13.11. Every element of V' has an irreducible representative
(that is minimal as measured by numbers of carets) by binary tree pairs
from which all other representatives are obtained by matched binary
refinements. The only representatives of the identity of V' are of the
form (D, o, D) where o is the identity and the irreducible representative
of the identity uses the trivial tree.
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13.1.7. Multiplication and inverse. As in F and T, multiplication
is opportunistic. Details are left to the reader based on discussions in
Sections 3.2, 6.2.3, and 12.2. The reader can work through the changes
to show that the square of the element in (13.1) is as shown below.

(13.2) Q %

The inverse of (D, o, R) is (R,0~ !, D).

13.2. Transitivity, generators, and simplicity. Our goal in
this section is to show that V' is simple. The argument is rather easy.
We leave more difficult properties to later sections and later chapters.

13.2.1. Transitivity. The next lemma has many consequences.

LEMMA 13.12. Let A = {w@,...,ux€} and B = {v,€,... v}
each be a set of pairwise disjoint cones that do not cover €. Then there
is an element f € V so that for each i € {1,...,k}, the restriction of
f to u;€ is the rigid cone map to v;C.

PROOF. The lemma follows immediately if we can put A in A" and
B in B’ where A" and B’ have the same number of elements and are
each a cover of € by pairwise disjoint cones.

The portion of € not covered by A can be covered by finitely many
pairwise disjoint cones. The same is true replacing A by B. Adding
the appropriate cones to A and B results in two finite covers A’ and B’
that might have different numbers of elements. Assume A’ has fewer
elements than B’. Replacing some u€ in A’ — A by the two sets (u0)€
and (ul)€ raises the number of elements of A’ by one. This can be
repeated as needed to make the number of elements in the two covers
the same while preserving A and B as subsets of the two covers. [

The following parallel to Lemma 8.15 is an immediate consequence
of Lemma 13.12. Note there can be no such parallel for the group 7.

COROLLARY 13.12.1. The group V 1is closed under deferment.

13.2.2. Generators. In V an element in the form (P, 3, P) will be
called a permutation. A permutation (P, [, P) in V for which § fixes
all but two elements of P will be called a transposition. If u and v are
the two elements of P not fixed by f, then the pair (u,v) completely
determines (P, 8, P). We will use 7, to denote this transposition.

A transposition (P, 3, P) where P has more than two elements
will be called a proper transposition. The following is immediate from
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Lemma 13.12 and will be used in the argument for the simplicity of V.
It is the reason for forcusing on the proper transpositions.

LEMMA 13.13. Any two proper transpositions are conjugate in 'V .

The only non-proper transposition is my; which has no fixed points
in € and is not conjugate to any proper transposition.

Before we show that the proper transpositions generate V', we need
the next observation.

LEMMA 13.14. If P is a complete prefix set with more than one
element, then for some u € {0,1}*, both u0 and ul are in P.

PRrROOF. The force of having more than one element is that P can-
not contain the empty word. Letting v be a longest element in P, the
argument proceeds exactly as in the proof of Lemma 7.2. U

PROPOSITION 13.15. The proper transpositions generate V. The
normal closure of any proper transposition is all of V.

PrROOF. The second sentence follows from the first and Lemma
13.13.

If P, is the subgroup of V' generated by proper transpositions, then
we want to show that V' = P,. The only non-proper transposition g
has 71 = moo,107m01,11 and is thus in P,. Permutations on a finite set
are generated by transpositions, so all the permutations are in P,.

To end the argument, we show that given an element f of V', we
can multiply f on the right by permutations so that the result is the
identity element. Representing f as (P, [, Q), we know that if P has
only one element, then so does () and that element is the empty word.
Thus f is the identity element.

If P (and thus also @) has more than one element, then P contains
a pair of the form u0 and ul and () contains a pair of the form v0
and vl. By choosing the right permutation v, we can insure that gy
in (P,pv,Q) = (PB,Q)(Q,, Q) takes u0 to v0 and ul to vl. Now
(P, 57, Q) represents the same element as (P’,d,Q’) where P is ob-
tained from P by replacing u0 and ul by the single element u, @' is
obtained from @ by replacing v0 and v1 by the single element v and ¢
sends u to v and equals v otherwise. Now P’ has one fewer element
than P, and this process can be repeated until the identity element is
achieved. O

PROPOSITION 13.16. The group V is generated by the four elements
in X = {xo, 1,701, 10,11 }-
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PrROOF. From Proposition 12.18 the su/l\)group VofV generated by
X contains all of T. We must show that V' contains all proper trans-
positions. We separate the proper transpositions into several classes.
If m,, is a proper transposition, then we know that v L v and we can
assume that m,, has been written so that « < v under the prefix order.
Our classes will depend on the locations of v and v in the complete
binary tree 7.

The “left edge” of T are nodes of the form 0™ with n > 0. The
“right edge” are nodes of the form 1™ with n > 0. All other nodes are
“inner.” We say that a transposition m,, is inner if both v and v are
inner. We don’t have to say “proper” since an inner transposition is not
0,1 By the transitivity properties of F' and the fact that F'is contained

in V we know that all inner transpositions are conjugate in V. Thus

we need to show that V' contains at least one inner transposition, and
that the inner transpositions with X generate all proper transpositions.

We offer
((7T10,11)I°)7r10’11 = (7T110,111)7T10’11 = T'100,101

as evidence that V contains at least one inner transposition.

If the proper m,, is not inner, then we say it is of class 2 if both
u and v are on an edge of 7. All other proper transpositions that are
not inner are of class 1. The depth of 7, , is the smaller of the depths
of u and v.

For any transposiion ,,,, we have m,, = Ty0,40Tu1,01. Let 7, be
one of the factors. We note that 7, ,» has depth at least 2 and cannot
be of class 2, and that «’ and v’ end in the same symbol. So it sg\fﬁces
to show that all proper transpositions of this description are in V.

Let m,, be of class 1 and depth at least 2 where v and v end in
the same symbol. We will show that m,, is conjugate to an inner
transposition. Our conjugators will be from among 1, 711 and
700,00 = (7m10,11)™ . The symmetry of our tools and the fact that =, , =
Ty allows us to assume that uw = 0" for some n > 2. We know that v
ends with 0, and because u 1 v must be true, we know that v contains
at least one 1.

If v starts with 1, then conjugating m, , by 701 produces an inner
transposition. If v starts with 0, then conjugating , , by mo 1 produces
an inner transposition. This completes the proof. O

In fact V is finitely presented. The work involved is greater than
for F' and T and will be deferred to Section 27 where we use an action
on a complex to get a very geometric presentation. A more direct
computation is to be found in [43].



13. THE GROUP V 91

13.2.3. The simplicity of V.
THEOREM 13.17. The group V is simple.

PrROOF. From Proposition 13.15, we must show that any non-identity
element f = (P, 3, Q) has a proper transposition in its normal closure.
Since f is not the identity, the empty word is in neither P nor Q.

We first argue that there is a cone v€ with the length of v greater
than one on which f is a rigid cone map and which is disjoint from its
image under f. There is some u € P with uf # w. If v L uf, then we
take v = w0 to make sure v is as long as desired. Otherwise one of u
and uf is a proper prefix of the other. Different appeals to symmetry
allow us to assume that not only is u a proper prefix of uf3, but also
that w0 is a prefix of uf. Now f takes ul to (uf)1, (ul)€ is disjoint
from ((uf)1)€, and we set v = ul.

Let w€ = (v€) f. Now g = [f, Twow1] = Tp001Twow1 18 in the normal
closure of f. And [g, Ty0.1w0] = T00.w0Tw1w1 18 in the normal closure of g
and thus of f. But by Lemma 13.9, 7y ,07v1,01 = To,w, & transposition.
Since the length of v is at least two, 7, ,, is a proper transposition. [

The proof of Theorem 13.17 works by showing that ultimately, every
permutation in V' is even. This can be compared to the variations of
V' in Section 38.8 where this does not hold.

13.3. Subgroups. For the following, we note that for a group G,
a set X and a bijection  : G — X, we get a right action of G on X
induced from f in which (8g)h = B(gh) for g,h € G.

PRrOPOSITION 13.18. The free group on two generators is isomor-
phic to a subgroup of V. FEvery countable, locally finite group is iso-
morphic to a subgroup of V.

PROOF. Expressed as a group of homeomorphisms of Homeo(€),
the group T is a subgroup of V. So the first sentence follows from
Proposition 12.13.

For the second sentence, let G be finite and n = |G|. Let T be a
subtree of 7 rooted at () with strictly more than n leaves and let 3 be
an injection of G into A(T"). We note that the action of G on the image
of 5 induces an embedding of GG into V' as a group of permutations (in
the sense of Section 13.2.2) by declaring that G fixes the leaves of T
that are not in the image of 5.

Now assume that G is a subgroup of index ¢ in the finite group H
and let K be a left transversal for G in H containing the identity. Let
V;_1 be the right vine of ¢« — 1 carets and ¢ leaves and attach a copy
of V;_1 to each leaf of T' that is in the image of 5. Let 7" denote the
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resulting tree. Let v be a bijection from K to the leaves of V;_;. Note
that the action of G within V' permutes the attached copies of the V;_;.
We build a bijection 4 from H to the leaves of the n attached copies
of V;_1 in T" by setting for each k € K and g € G, Y(kg) = (Bg)(vk)
viewing the vertices of T as elements of the monoid 9. Now the
bijection 4 induces an action of H on the leaves of the attached copies
of V;_1 which, in turn, induces an embedding of H into V' by fixing the
leaves of T” that are not in the image of 4. These are just the leaves of
T not in the image of .

The action of G on the leaves (8¢g)(v1) is conjugate to the original
action of G induced by (. This uses the fact that the image of [ is
not all the leaves of T'. Since the action of H before the conjugation
was induced by a bijection 4 from H to some of the leaves of T", we
can insist that after the conjugation the action of H is induced by
some bijection from H to some but not all the leaves of a tree T”.
Since any countable, locally finite group is a countable union of an
ascending nested sequence of finite subgroups, this allows us to embed
any countable, locally finite group into V. O

REMARK 13.19. Both T" and V' can be exhibited as a group of
fractions of a positive monoid. The resulting structures are slightly
less well behaved than for F'. As of this time, there is no plan to
discuss this in the book.

14. End notes

The standard reference since 1996 for the basics on F', T and V has
been Cannon-Floyd-Parry [43]. Notes on F' by Burillo [39] are available
online. There are two nice introductory books with chapters on F'. One
is Meier 2008 [153] (Chapter 10 with an appropriate epigraph), and the
other is Bonanome-Dean-Dean 2018 [23] (Chapter 2). The 1992 paper
[173] is a survey of the finitely presented, infinite, simple groups known
as of that date and covers the generalizations of V' by Higman [107]
and parallel generalizations of T' from Brown 1987 [34].

Most of the material in this chapter comes under the heading of
well known, and shows up in several places. Initial knowledge of the
Thompson groups comes from a set of notes handwritten by Thompson
some time after 1973 and very widely copied and circulated. The lower
limit on the date is apparent from the fact that the notes refer to the
published version of [152]. Much material was adapted from [43] which
expanded on and added to the material in Thompson’s notes, and from
[34] and [36]. The piecewise projective version of F' is attributed to
Thurston. The universal property of Section 10.2 has multiple sources
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which are discussed in Section 19. Remark 12.14 is from [179]. The
derivation of a finite presentation for 7" in Section 12.8 is simpler than
ones found in the literature and I learned of it from Jim Belk. I learned
the simple proof of the simplicity of V' from Matti Rubin. The second
provision of Proposition 13.18 is from Higman [107].

It is mentioned in the preface that Thompson’s groups tend to be
“none of the above.” They are not linear because they are not resid-
ually finite. They are not hyperbolic because they contain infinitely
generated free abelian subgroups. They are not Kéhler by [156] and
[157]. They are not right angled Artin groups (RAAGs) since RAAGs
embed in linear groups. They are not groups that satisfy the Tits al-
ternative which includes mapping class groups of hyperbolic surfaces
of finite type, certain general Artin groups, and outer automorphism
groups of free groups. Groups in the Thompson family do show up as
subgroups of big mapping class groups (BMCGs), those mapping class
groups of surfaces of infinite type.

See Guba-Sapir 1997 [99] and Genevois 2025 [78] for information on
diagram groups. Diagram groups overlap with Thompson’s groups (in
particular, both contain F') but neither class contains the other. For
groups such as F', the diagrams are basically dual to tree pairs when
stripped of certain labels, and (with some work) facts about F' derived
with the use of diagram group diagrams can be derived in other ways.
An example of this is our treatment of the word length function for F’
in Section 44.

Exercises such as seen in Theorem 4.11 to resolve behavior on dif-
ferent orbitals lie behind the main result of Brin 1999 [28], which is
reworked from a more universal viewpoint in Hyde-Moore 2023 [115],
and they appear in Bleak 2008-9 [18, 19, 20]

Chapter 3 discusses the mathematical structures from which the
Thompson groups arise. Section 15 of that chapter gives some of the
early history of the groups. Since the groups were discovered several
times, the history has some wrinkles.

The definitions of F', T and V' and the mechanics for the manipula-
tion of their elements are clearly subject to modification. There is an
entire world of modifications of the three original groups, and some of
this (all would be impossible) is discussed in Chapter 6. Subgroups of
F, T and V can be surprisingly varied, and at the same time there are
surprising restrictions. Subgroups are not covered in this edition.

The high level of transitivity of the groups makes their algebra very
expressive. To be more precise, the first order theory of the groups is
powerful and complex. This is discussed in Chapter 5.
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The rich combinatorial structure of both the groups and the ma-
chinery that goes with them, along with their structures as groups
of fractions allows the construction of simplicial complexes with good
properties on which the groups act. Some of these complexes, the ac-
tions and their consequences are covered in Chapter 4. That chapter
also covers a complex that arises from the status of F' as an initial
object in the category of groups with a conjugacy idempotent.

That the word problem is solvable in F', T" and V is very straigh-
forward. Less straightforward is the conjugacy problem and other al-
gorithmic problems. This will be covered in a planned later chapter.

Subgroups are inclusions and thus a special type of morphism. Iso-
morphisms between the variants of Chapter 6 can be subtle, and the
automorphisms of the groups themselves just as subtle. Necessary con-
ditions for isomorphisms between variants of V' are covered in Chapter
6, and are shown to be sufficient in Chapter 7. Other morphisms among
the Thompson groups will be covered in a planned later chapter.

The heavy use of words opens the door to applications of automata
and there are strong connections there. This topic will be included in
planned later chapters.

The interaction between the Thompson groups and self similar
structures will show up regularly in later chapters. The key idea is
that the behavior of the groups is determined by their action on pieces
of a space that resemble the entire space. This idea lies behind the
material on the origins of Thompson’s groups in Sections 16, 17, and
18 of Chapter 3. This is discussed further in the end notes (Section 21)
to that chapter. Algebraic structures that abstract the local actions on
self similar spaces interact strongly with Thompson’s groups. Some of
this interaction is introduced in Chapter 7 where it is shown that the
representations of the Thompson groups into these structures proves
useful in classifying a family of variants of V.

The simplicity of the groups (or as will be seen later, simplicity
of subgroups in the derived series) and generalizatons of finite pre-
sentability are two constant themes of groups in the Thompson family.
Simplicity of some of the variants is discussed in Chapter 6. General-
izations of finite presentability are discussed in Chapter 4.

The piecewise projective representation of Thompson’s groups have
proven useful in building important examples. See Lodha-Moore 2016
[139].

The many flavors of the Thompson groups and the similarity among
them of some properties motivates a search for generalizations. We will
not discuss these, but we mention a few here. To some extent, diagram
groups [99, 78] are a generalization. An approach using semigroups
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due to Lawson and at times with coauthors perhaps starts with 2007
[131] and extends to Lawson-Vdovina 2024 [134]. There are strong
connections with these structures and those considered in Sections 16
and 40. See the end notes in those chapters. For another approach, see
Martinez-Pérez-Nucinkis in 2013 [150], and together with Matucci in
2016 [149]. A categorical approach is in Thumann 2017 [191]. Locally
symmetric spaces are used in Hughes 2009 [113] with an appendix by
Farley, and several succeeding papers by the two of them. The connec-
tion of V' and other groups to shifts as described in Paragraphs 13.1.1
open the possibility to generalizations and unifications from dynamical
systems and related algebraic structures. These may be sorted out in
later editions.
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'The Thompson groups have been discovered several times for sev-
eral reasons. We give details in this chapter. Hindsight gives alternate
ways that the groups might have been discovered, and we include one
because of its generality and because it adds weight to one of the ap-
proaches. Relating these stories allows us to exhibit some mathematical
reasons for the existence of the groups.

The first section of this chapter is both an introduction to the rest of
the chapter and a brief history of the early literature of the groups, from
Thompson’s first introduction in the late 1960s to the expository 1996
paper [43] of Cannon-Floyd-Parry. Only a few dozen papers relating
to Thompson’s groups appeared in that period. Since [43], there have
been hundreds.

The remaining sections cover a monoid of Thompson that preceeded
the groups (Section 16), a section of hindsight on self similar objects
in a category (Section 17), an algebraic structure whose automorphism
group is V' (Section 18), the intimate connection beteween F' and ho-
motopy idempotents (Section 19), and the groups as structure groups
of common algebraic laws (Section 20).

15. Introduction and some early history

15.1. Late 1960s. The Thompson groups F' and V first appeared
in print in McKenzie-Thompson 1973 [152]. The paper was presented
at a September, 1969, conference in Irvine on decision problems in
groups. The groups F' and V' were not the main point of the paper,
and some of their basic properties were used to build an example, more
elementary than previous examples, of a finitely presented group with
unsolvable word problem. The groups F' (denoted ) and V' (denoted
@’) are mentioned in the concluding remarks of [152] where it is stated
that V' is infinite, finitely presented and simple. These facts about V'
were announced by Thompson at the conference.

Earlier in 1969, Thompson had described the structure of V' and
its properties to Fred Galvin, a vistor at Berkeley. Galvin, a student
of Bjarni Jénsson, was familiar with a variety of algebras 2, o from
Jénsson-Tarski 1961 [119] which was universal for the property of hav-
ing its free algebra on one generator also free on two generators. Galvin
suggested that V' was the automorphism group of this algebra which
Thompson then verified. In May of 1969 Galvin wrote about this to
Jonsson who forwarded the information to Graham Higman.

IThis chapter is reasonably complete. Minor changes may be made in the
future.
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Thompson’s discovery came from an attempt to apply facts about a
monoid containing V' to algebraic logic. Modifying a formal statement
can alter whether the statement is true, motivating a sytematic study
of how formal expessions are modified. As an example, the focus of
Jénsson 1962 [117] is on substitution of variables, and generators and
relations are found for the monoid of finitely supported endofunctions
on a set S (those f : S — S for which {x € S | xf # z} is finite),
where elements of S are interpreted as variables, and the endofunctions
as substitutions. The analysis is used in [117] to simplify the proof of
a result in cylindric and polyadic algebras. Further analysis of this
monoid appears in Thompson’s 1979 thesis [190].

Separate from his thesis, Thompson had considered a monoid .#
of transformations of formal expressions that also take into account
the movement of parentheses. This monoid never saw application to
algebraic logic, but it led directly to the groups we call Thompson
groups. The group V' is the group of invertible elements of .Z .

Thompson found a finite presentation for .#, and observed that
the group of invertible elements was infinite and also finitely presented.
Thompson asked John Rhodes, the closest algebraist he knew, what to
do with it, and Rhodes advised him to look for normal subgroups.?
Proving that there were none, Thompson had built the first example
of an infinite, simple, finitely presented group.

Thompson never published his results about ., but did describe
its structure and the proof of its finite presentability in talks at Palo
Alto in 2004 and Luminy in 2008. We give the details in Section 16.

Thompson surmised (as he put it “On reading Hewitt and Ross”)
that F' might be a counterexample to what is oftern referred to as the
von Neumann-Day conjecture, that a finitely generated group with no
non-abelian free subgroups is amenable. News of this question did not
spread rapidly until the 1980s. See Section 15.4.

15.2. Early to mid 1970s. The introductory paragraphs to Boone
and Higman 1974 [25] mention that in his presentation of [152] at the
[rvine conference, Thompson pointed out that all subgroups of a finitely
presented simple group have a solvable word problem. While easy to
demonstrate, this was not generally known, and the information led
Boone and Higman to prove in [25] that a finitely generated group G
has a solvable word problem if and only if it embeds in a simple sub-
group S of a finitely presented group P, and further to ask in (4) of
Boone 1974 [24] whether S and P could be made the same. An in-
termediate question was also raised in [24] as to whether S could be

2Both Thompson and Rhodes tell this story.
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made finitely generated. Earlier sources for Thompson’s observation
were noted in a late addition to the end of [25].

Thompson answered the intermediate question in his only other
published paper on the Thompson groups 1980 [189] (announced 1976
at a conference in Oxford) by showing that the simple group S could be
made finitely generated. This was done by having an arbitrary group G
given as an action on a set L and a modified version of V' acting on the
Cantor set € act together on L x €, and then looking at the group that
they generate. For G countable with solvable word problem, enlarging
G and shrinking the combination preserves the solvability of the word
problem and forces simplicity and finite generation of the combination.
The Higman embedding theorem then embeds the result in a finitely
presented group. A modification of the techniques in [189] was picked
up later and carried farther by E. A. Scott.

Progress on the full question (now known as the Boone-Higman con-
jecture) has focused on finding more finitely presented, infinite, simple
groups, understanding their subgroups, and putting classes of groups
known to have solvable word problems into them. All infinite, finitely
presented, simple groups discovered so far have been closely related to
Thompson’s groups with the exception of the groups of Burger-Mozes
2000 [37] and Caprace-Remy 2009 [45]. We will not cover these excep-
tions. The groups of [37] and [45] are somewhat related to each other,
and are quite different from groups in the Thompson family.

Building on the news from Jénsson, Higman 1974 [107] generalized
the Jénsson-Tarski variety 2A; o to a family 21, ,, where the free algebra
Jnr, 1 < 17 < m, on r variables in 2, ,, is isomorphic to exactly the
algebras in 20, that are free on r + k(n — 1) variables as k ranges
over N. Higman then showed that all the V,,, = Aut(J,,) are finitely
presented, are simple if n is even, and have a simple subgroup of index
two if n is odd. Further Higman partially classified the V,,, to the
extent of showing that n # m implied that V,,, and V,, s cannot be iso-
morphic, giving infinitely many isomorphism classes of infinite, finitely
presented, simple groups. Higman also showed, Proposition 13.18, that
every countable, locally finite group embeds into V' = V5 ;. By con-
trast, Higman shows that GL(3,Z) does not embed in any V,, ., noting
that GL(3,Z) has a solvable word problem. Much of this material is
covered in Section 38.8.

The Jonsson-Tarski paper [119] and its earlier announcement 1956
[118] appeared during a flurry of interest in the notion of independent
generating sets and possible variations from the predictable behavior
of rank in finite dimensional vector spaces. Varieties more general than
the 2L, ,, of Higman were independently constructed and explored by
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others in the late 1950s and early 1960s. The paper Swierczkowski
1961/62 [185] shows that in any variety of algebras, if the free algebra
on k generators is isomorphic to the free algebra on | > k generators,
with & the smallest for which this holds, and with [ = k+d the smallest
for which this holds for that k, then for any n > m, the free algebras on
m and n generators are isomorphic if and only if m > k and n = m+jd
for some j > 0. Further Swierczkowski shows in [185] that for each
0 < k <[ there is a variety 2; exhibiting exactly that behavior. It is
also shown in [185] that the varieties 2(;; are in a sense universal for
the stated properties.

This setting produced an independent discovery of a Thompson
group. The paper Smirnov 1974 [179] considers the automorphism
group of J, 1, the free algebra on one generator in the variety 2,
of [185]. Generators are found for the group, and it is shown that
the group is generated by permutations analogous to the permutations
of Section 13.2.2. Smirnov also proves that the groups contain an
isomorphic copiy of PSL(2,7Z), and that their subgroups are closed
under taking finite products. In an end note added prior to publication,
Smirnov states that, after obtaining the results in [179], he learned of
Higman’s and Thompson’s groups, having received notes of lectures
given by Higman in Australia in August of 1973.

No one has found a practical way to analyze the automorphism
group of the free algebra on k generators in the variety 2y, of [185]
when k is greater than one.

We give the details of the simplest variety 2, o of Jénsson and Tarski
in Section 18 and show that the automorphism group of its free algebra
on one generator is isomorphic to V. But before that, we show how
V' appears as a subgroup of automorphism groups in a more general
setting that is outside the history of Thompson’s groups. We explain
the connection.

If an algebra A is free on {a} and is also free on {b,c} with b #
¢, then with A, denoting the subalgebra generated by x, we have A
isomorphic to both A, and A. and further A is the coproduct of A,
and A.. Speaking loosely, A is the coproduct of two copies of itself.
The action of V' from Section 13 on the Cantor set € essentially takes
advantage of the fact that € is the coproduct of two copies of itself. In
Section 17 we show that in any category, if an object X is a coproduct
(or product) of two objects each isomorphic to X, then there is a
canonical homomorphism from V into Aut(X). Since V is simple,
this homomorphism is either trivial or an embedding.
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The copy of V' in Aut(X) can be well hidden. In the category of
sets, the set of integers is the coproduct of the set of odd integers and
the set of even integers, making V' a subgroup of the group ¥(Z) of all
permutations of the integers. But ¥(Z) contains an isomorphic copy of
every countable group, so this is hardly a surprise. However this shows
both that the Thompson groups can appear frequently, and that the
Jonsson-Tarski example is special in that it gives an example where the
automorphism group is exactly V.

15.3. Late 1970s. The third and fourth discoveries of a Thomp-
son group were almost simultaneous, and were for almost the same
reasons which were quite different from the first two discoveries. The
setting is of homotopy classes of basepoint preserving maps of pointed,
connected CW complexes. We use ~ to denote “homotopic to,” and to
save typing we will not distinguish between a loop at a basepoint and
the element of the fundamental group it represents.

If a CW complex X with basepoint p has a self map f that is
homotopic to f2, then f is a homotopy idempotent. But whether or
not that homotopy keeps p fixed during the course of the homotopy is
an important distinction. If p is kept fixed, then f is called a pointed
homotopy idempotent and it can be shown that there is a CW complex
Y, mapsd: X — Y and u : Y — X so that (composing right-to-left)
we have f ~ ud and du ~ 1y. In this situation, it is said that the
homotopy idempotent f splits.

On the other hand, if the homotopy drags p along a loop «, then
f is called an unpointed homotopy idempotent, and passing to the fun-
damental group, we have that f, = C, o f? on m(X,p) where C,
is conjugation by «. In the terminology of Section 10.2, the triple
(m1(X, p), f«, @) is a conjugacy idempotent, and since (F,o,xzq) is an
initial object for groups with conjugacy idempotent, there is a canoni-
cal homomorphism from F to w1 (X, p) taking zo to a and z; to f.(a).
In this situation, f splits if and only if this homomorphism is not in-
jective.

In the early 1970s, it was known that pointed homotopy idempo-
tents split, and nothing was known about unpointed homotopy idem-
potents. This question was related to other questions in shape and
homotopy theory. See Geoghegan 1978 [79] and the end of Hastings-
Heller 1981 [102]. In the second half of the 1970s, the group F' was
discovered twice by realizing that in the situation above, if o and f.(«)
do not commute, then they have to generate a subgroup of (X, p)
whose presentation is the infinite presentation (9.1) of F. This was
done in Dydak 1977 [63] where the author credits Minc with finding a
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faithful represenation for the presentation. It was also done in Freyd-
Heller 1993 [73] which had circulated as a prepreprint since the late
1970s. In Section 19 we give the details showing that the canonical
homomorphism from F' discussed above characterizes when unpointed
homotopy idemptotents split. The idempotent splits if and only if the
canonical homomorphism has non-trivial kernel.

15.4. Early 1980s. At a geometric topology converence in War-
saw in the summer of 1978, the pairs that discovered F' via homotopy
idempotents, Dydak-Minc and Freyd-Heller, were represented, respec-
tively, by Dydak and by Hastings, a student of Heller. During an after-
noon meeting with the two, Ross Geoghegan learned of the details of
the group F. At the time, Geoghegan was interested in the application
of the techniques of shape theory to groups via the ends of universal
covers of their classifying spaces, and he recognized the potential of F
to exhibit interesting behavior.

Geoghan conjectured, independently of Thompson, that F' might
supply a counterexample to the von Neumann-Day conjecture. Sec-
ondly, he conjectured that F' would answer question F11 of the prob-
lem list of the proceedings [193] of the 1977 Durham conference on
homological group theory. This asked whether there could exist a tor-
sion free group with property F P, (see Section 22.1 for the definition
and the related F), and Fl,) having a free abelian subgroup of infinite
rank. Lastly, Geoghegan conjectured that F' would have trivial coho-
mology at infinity. Specifically H"(F,ZF") = 0 for all n. Over the next
few years many people, including the author of this book, learned of
Thompson’s groups from Geoghegan.

During the Warsaw conference Dydak and Hastings used the prop-
erties of F' to show that homotopy idempotents on 2-dimensional com-
plexes must split, and the paper [64] appeared in the 1980 proceedings
of the conference. Hastings and Heller then proved, Theorem 28.9, that
homotopy idempotents on any finite dimensional complex must split.
The proof used the fact that F' must be a subgroup of a counterexam-
ple Y together with a spectral sequence argument to give facts about
the homology of Y. The result appeared in an early 1981 summary
[102] in the proceedings of a Dubrovnik conference that year on shape
theory and geometric topology, and also in 1982 [103].

The question from [193] was settled by Brown-Geoghegan 1984 [36]
where they show that F'is of type F,, by building a classifying space for
F based on its status as an initial object in the category of groups with
a conjugacty idempotent that has exactly two cells in each dimension.
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They derive from that a more elementary proof that homotopy idem-
potents on finite dimensional complexes split, and also the fact that
H,(F,Z) =Z & Z for all n > 1. These results are covered in Section
28. Also in [36] is a proof that H"(F,ZF) = 0 for all n. The paper
was also the first among those working on the homotopy idempotents
queston to show awareness of Thompson.

We note that homology calculations for Thompson’s groups have
been difficult to obtain and slow to arrive. There will be a few more
homology results mentioned in this early history. However, there have
been recent results, starting in 2019 with [186], using techniques from
homotopy theory.

The von Neumann-Day question first requires showing, Theorem
4.11, that F' contains no non-abelian free subgroups. This was shown
independently in Brin-Squier 1985 [31], Freyd-Heller 1993 (but written
much earlier) [73], and Cannon-Floyd-Parry 1996 [43]. The question
of whether F'is amenable remains open, and the question became well
known from talks given by Geoghegan.

In unpublished notes written after the 1976 Oxford conference, Hig-
man suggested modifications to Thompson’s method in [189] for com-
bining families of groups with V', and further suggested several goals.
The goals included refining the method further to create larger classes
of infinite, finitely presented, simple groups, finding groups in these
classes that contained subgroups isomorphic to GL(n,Z) for n > 3,
and finding groups in the classes that had some undecidable properties.
For the last, Higman suggested an undecidable conjugacy problem.

In a series of three papers appearing in the same 1984 volume of
the Journal of Algebra, E. A. Scott fulfilled all three suggestions. The
first [174] gives a general construction for building infinite, finitely pre-
sented, simple groups. The construction differs from that of Thompson
[189] in that it restricts the class of groups it combines with V', but has
each such group act on the Cantor set simultaneously with V', rather
than act on enlargement of the Cantor set. Enough connection to [189]
exists for many lemmas from [189] to apply. In [176], the technique is
applied to several groups including the GL(n,Z), the semidirect prod-
ucts Z" x GL(n, Z), the groups Z[], for fixed n > 2, and certain other
abelian groups to put them each in a finitely, presented group. In [175]
a group of Miller [154] with an unsolvable conjugacy problem is used
to build a finitely presented, simple group with the same property.

15.5. Mid to late 1980s. Some important properties of F' come
from its status as a group of PL homeomorphism of R. The paper [31]
is primarily about PL, (R). Bieri and Strebel learned of the group F'
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and [31] from Geoghegan and wrote an extensive set of notes 1985 [13]
that included general results on presentations and finiteness properties
of subgroups of PL,(R), as well as the first results on automorphisms
of these groups. The groups G(K, A, P) considered were determined
by a finitely generated multiplicative group P of allowed slopes, and
a P-invariant ring A of allowed breakpoints, all on a closed (possibly
unbounded) interval K in R. The group F equals G([0, 1], Z[3], (2)).
The notes were amended and published in book form in 2016 [15].

Brown 1987 [34] derives a general technique for proving property
F,, for a group and applies this to show the V,,, of Higman and corre-
sponding generalizations of F' and T are all of type F,. Some of this
is covered in Sections 25 and 26. The paper [34] established a general
outline for proving facts about the properties F;, and F,,. This outline
is discussed briefly in Section 27.3. The paper also analyzes the nor-
mal subgroups of these generalizations, showing that the commutator
subgroups of the variants of F' and V' and the second commutator sub-
groups of the variants of T are all simple. The paper [34] along with
Higman’s notes [107] served as the earliest reference for facts about the
Thompson groups.

Ghys and Sergiescu learned of the Thompson group family from
Geoghegan. Their paper 1987 [82] derives a number of results about
the groups, mostly about 7" (denoted G in [82]) and the dynamics of
its actions on the circle S' = R/Z. Among the results are that every
element of 7" has rational rotation number, and (Lemma 12.10) every
rational in (0,1) is a rotation number of some element of 7. Also
shown is that T is conjugate to a smooth action on S! and facts about
the stablity and invariants of the various C" actions are given. The
cohomology ring structure is described for F', F', T and T where the
latter is the lift of 7" to R. See [82] for more.

15.6. Early to mid 1990s. The braid group B, on n strands in-
cludes naturally into B,,1; by adding an unbraided strand at the right,
and the homology of the direct limit B, of the B,, is understood. The
analysis of the homology of F” in [82] and the known homology of B,
hinted to Greenberg and Sergiescu that there might be an extension of
F' by By that is acyclic. In 1991 [96], they construct such an exten-
sion with the predicted property. Sergiescu also promoted Thompson’s
groups widely, and Greenberg put out a rapid series of papers [90, 89,
94, 93, 91, 92, 95] on the geometry, combinatorics, and projective as-
pects of Thompson and related groups before his untimely death in
1993.
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Stein, a student of Brown, in 1992 [183] worked with variants of
the Thompson groups of the form G(K, A, P) studied in [13] in which
the group P of allowable slopes has rank greater than one. In [183],
Stein builds complexes similar to those in [34] using more sophisticated
collapsing arguments that include some of the type used in [36]. With
these complexes, property Fl, is proven for many of the groups, sim-
plicity results were obtained paralleling those of [34] for corresponding
variants of 7" and V/, presentations are obtained for some, and abelian-
izations are calculated for the non-simple variants. More intricate are
homology calculations done for the F' variants where the slope group
has rank no greater than two.

A 1992 survey paper [173] by E. A. Scott in the proceedings of a
1989 conference in Berkeley gave a survey of the known finitely pre-
sented, infinite, simple groups including those from [107], [174], [176],
[175], and [34].

In the same proceedings the paper [35] by Brown uses the complexes
from [34] with the collapsings from [183] to present V' as an amalgama-
tion of three finite groups. Brown also uses the complex to prove that
V' is rationally acyclic and asks if V' might be integrally acyclic.

In the 1995 paper [47] Cleary considers subgroups of PL(R) with
irrational slopes. In the notation of [13], groups such as G = G(K, A, P)
are considered with P the cyclic, multiplicative subgroup of R gener-
ated by an irrational «, A, the set of breakpoints of elements of G, a
P-invariant ZP module in R, and K an interval with endpoints in A.
The irrationality of « allows for multiple choices of how to subdivide
intervals in the construction of elements of G. A specific example with
o =2+ 1 is studied. With « satisfying a2 4+ 2a~! = 1, an interval
can be divided into three intervals of unequal length and still be used to
create PL homeomorphisms with slopes that are powers of a. Because
of this, there are several choices as to how to subdivide a given interval.
It is shown in [47] that the patterns created allow a complex along the
lines of [34] and [183] to be built to prove that G([0, 1], Z[v/2], (@) has
type F. Indications are given to show how the analysis applies to
certain other algebraic numbers a.

Fordham’s 1995 thesis [71] starts the geometric studies of the group
F' by calculating the word length metric for F'. The thesis circulated
widely before the published version [72] appeared in 2003.

In Brin 1996 [27] the automorphism groups of F' and T are com-
pletely analyzed. In particular, it is shown that all elements of an
index 2 subgroup of Aut(F) come from conjugations by elements of
PL.(]0,1]), and that the outer automorphism group of 7" has order 2.
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The only writing by Thompson on the Thompson groups beyond
what has been mentioned above was a set of handwritten notes written
some time after the 1973 apperance of [152]. These were copied, re-
copied and passed around many times until the appearance of Cannon-
Floyd-Parry 1996 [43]. The paper [43] fleshed out Thompson’s notes
by adding numerous missing details and extra results. The paper also
includes a projective version by Thurston that generalizes to higher
dimensions. Since its appearance, [43] has been the standard introduc-
tion to Thompson’s groups.

15.7. The last (known) independent discovery. A discovery
by Dehornoy of F' and V' was for reasons that are somewhat closer to
Thompson’s original discovery. The LD or left (self) distributive iden-
tity z- (y-2) ~ (z-y) - (x-z) had been known to be of importance in the
study of large cardinals in set theory. See the introduction to Dehornoy
1989 [53]. Conjugation in groups (with a reversal of order) satisfies this
identity since (2¥)* = (2%)%¥"), but is not the freest example. Questions
in free algebras defined by LD are quite difficult to answer, and in [53],
Dehornoy studied a monoid of expression modifications generated by
the LD identity.

In Dehornoy 1993 [54] the approach of [53] was generalized to build
monoids for certain algebraic identites which could then be embedded
in a group of fractions. This was applied to both the associative law and
the commutative law. In each case an infinite presentation is extracted
that is explicit in the case of the commutative law, and implicit in the
case of the associative law. In the latter case, a normal form and a
solution of the word problem is derived. The group obtained from the
associative law is considered again in Dehornoy 1996 [55], and also in
the Appendix to Chapter IX of the book Dehornoy 2000 [56] where
it is noted that this group is isomorphic to the Thompson group F'.
Motivated by this material, Section 20 gives an argument to justify
that I’ is “the structure group of the associative law.” The structure
group combining the associative and commutative laws is V.

16. The Thompson monoid

We describe Thompson’s monoid .# and give the argument that
A is finitely presented. We do so for historical interest, because the
technique for showing that .# has a certain presentation is different
from arguments that we have used before, and because the move from
group to monoid introduces ideas that will be repeated later. See the
end notes of this chapter.
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We work with two representations of .# and do not distinguish
between them. One acts as modifications of formal expressions, and
the other acts as endomorphism of the Cantor set €. The identification
of the two represenations factors through functions between leaf sets
of finite, binary trees. While trees tie the two representations together
and help with certain arguments, we will not use them for calculations.
In spite of the fact that a monoid of expression modifications and a
monoid of endofunctions of € are different monoids, we will recklessly
use .# to denote both.

16.1. Expressions and their modifications. We assume an in-
finite supply of variable symbols. However, we reserve the letter e to
represent an unknown complex expression of one or more variables. We
will use e with subscripts or primes such as ¢y or ¢” to denote separate
complex expressions rather than use different letters.

DEFINITION 16.1. Recursively, a fully parenthesized expression is
either a single variable, or an expression (eje3) where e; and e, are fully
parenthesized expressions. We usually omit “fully parenthesized,” and
also omit the outer matched parentheses in expressions having more
than one variable. For example, we will write (ab)(cd), ab, and a(bc)
instead of ((ab)(cd)), (ab), and (a(bc)).

An ezpression pair is a pair (eg,e;) usually denoted ey — e; of
fully parenthesized expressions that satisfy the following. No variable
appears twice in ey. Every variable that appears in e; also appears in
€0.

The monoid . is built on expression pairs, and we give five im-
portant elements of .#Z which illustrate the points in definition above.

P:ab— ba R : a(bc) —(ab)c
(16.1) U:a — aa K:ab —a
L:ab— b

In particular, the two expressions in a pair do not have to have the same
number of positions, not all the variables used in the first expression
need show up in the second expression, and a variable may show up
more than once in the second expression.

Variables are regarded as placeholders, and the second expression is
the modification of the first expression. There are no needs beyond the
fact that the modification needs to be able to specify unambiguously
each position of the first expression, and be able to say where the
information in each position in the second position comes from.
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Different expression pairs can represent the same element of .Z.
Replacing all appearances of one variable in both expressions by a
fixed expression (which could simply be another single variable) gives
another representation of the same element of .Z as long as no variable
ends up duplicated in the first expression. Thus L : (pq)((rs)t) — (rs)t
and U : (zy) — (zy)(xy) are alternate representations of L and U.
Consequently, a bijective substitution of variables also does not change
an element of .#Z. So U : b — bb and U : z — zz also represent U.

16.2. Labeled trees and the Cantor set.

DEFINITION 16.2. If T is a finite binary tree, then a labeling of T’
is a function A : A(T') — A from the leaves of T" to a set of variables A.

The expression given by A is the label of the root of T defined by
recursively extending A to all the nodes of T as follows. If {u,u0,ul}
is a caret in T then A(u) = (A(u0)A(ul)). An easy induction shows
that every fully parenthesized expression is given by some labeling of
a tree.

Expressions used in (16.1) correspond to labeled trees as follows.

aa < a(be) ab%c
ab = (ab)e a/gc
a < g

This lets us write the elements of .Z given in (16.1) as follows.

P B) (e Y

boerd b
(16.2) U= (d, a/\a) K= (a/\b, d)
- (1

We regard the pairs in (16.2) as specifying a function from the
leaves of the second tree to the leaves of the first tree. The function
is determined by the labels in that it takes a leaf of the second tree
with a given label to the unique leaf of the first tree with the same
label. With our conventions, the function is well defined, need not be
injective, and need not be surjective.

If we regard an expression modification as a morphism between
labelings, and we regard a map from the leaves of one tree to the leaves
of another as a morphism between trees, then the relation between
the two kinds of morphisms is contravariant since a labeling is a map
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from leaves of trees to a fixed set of variables. This requires a careful
discussion of conventions of order of writing and order of composition.
Asin K : ab — a, we choose to write expression modifications with
an arrow to the right. Using the same symbol K for the corresponding
map between tree leaves, we will write K : a/\ b a with an arrow to
the left. We continue to compose maps between trees from left to right,
and we will compose expression modifications from right to left. We
anticipate the discussion of multiplication with the simple example

(16.3) ab—>ba =~ b

which allows us to write L = K P.

On the Cantor set, we continue to compose from left to right and
write the action on the right. Given a function p : A(T}) < A(T3), the
induced continuous function that we still denote by p from the Cantor
set € to itelf has the usual definition

(16.4) (ua)p = (up)a, ue A1), aeccl.

As usual, we can omit mentioning the suffix « as predictable and
write the effects of the elements in (16.2) on € as follows.

1 <0 0 <« 00
P:{ R:{10 <01
0 «1
11 «1
(16.5) ) o
%
U: K:0<«+
{@ «—1 0
L:1+10

In words, P affinely interchanges the two halves of € and is the
generator my; of T" and V' from Sections 12.8 and 13.2.2, R is the
generator xg of F', T and V', U is the one-sided full shift (doubling
map) of Section 13.1.1 on €, K maps € affinely onto its left half, and
L maps € affinely onto its right half.

16.3. The monoid. We base the monoid .# on the Cantor set.
Expression modifications clearly map to Cantor set endomorphisms,
but we do not discuss the possible kernel in going from expression
modifications to Cantor set endomorphisms. So calculations using ex-
pression modifications will be limited to showing that certain elements
are equal, and functions on the Cantor set will be used when we want
to show that certain elements are not equal.
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DEFINITION 16.3. The Thompson monoid .# is the topological full
monoid of the full one sided shift ¢ of Section 13.1.1 on the Cantor set
¢ in that the elements of .# are the endofunctions of € whose germs
are compositions of germs of ¢ and their inverses.

The definition makes it clear that .# is a monoid under composi-
tion, and from Definition 13.6 it is clear that the group of invertible
elements of .Z is the group V. The following is a parallel of Proposi-
tion 13.7. It ties the definition above to the discussion in Sections 16.1
and 16.2. The vocabulary is from Section 13.1.5.

PROPOSITION 16.4. For each f € 4, there are finite binary trees
Ty and Ty and a function p : A(Ty) < A(Ty) that determines f by the
formula in (16.4). Further, if T is a tree so that for each u € A(T), f
15 a rigid cone map on u&, then Ty can be chosen to contain T.

ProoF. If T is not given as in the assumption of the second sen-
tence of the statement, then we find one. As in Section 13.1.5 germs
of f are represented by rigid cone maps whose domains are a cover
of € by clopen sets, and as in Section 13.1.6 there is a finite cover
{u1 €, us€, ... u, €} of € by pairwise disjoint cones on each of which f
is a rigid cone map. From Lemmas 8.5 and 8.8, the u; are the leaves of
a finite binary tree 7.

The image of each u;€ is some v;&€, but the collection {vq,..., v}
need not be of pairwise orthogonal elements of {0,1}*. It is not a
problem if v; = v; for some ¢ # j since the p that we seek need not be
injective, but we might have v; < v; which prevents the v; from being
the leaves of a tree.

From Lemma &8.11 there is a smallest finite tree 7} that contains
all the v;. For each v;, we form S; = (T1),,/v;, the tree rooted at ()
isomorphic to the subtree of T} rooted at v;. The tree S; is trivial
for each v; that is a leaf of T3, but keeping these v; makes the next
discussion more uniform. Let

u; €A(T)

In words, for each u; we hang the tree S; on T at u;.

A leaf of Ty is of the form w;A for some A € A(S;) and v;A is in
A(Ty). We let p take each such u;A to v;A, and we note that f takes
u; A€ rigidly to v;A€. Now 17, T, and p are the items sought. O

16.4. The multiplication. Proposition 16.4 makes multiplica-
tion in .# reasonably straightforward, if a bit more complicated than
in F', T and V. Doubts of correctness might arise when we use the
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representation as expression modifications, but they can be dispelled
by checking calculations in €. We will not do such checks and leave
them to the reader.

Consider (Rg, 09, D3)(R1,01, D) to be two elements to multiply
where o; : A(R;) < A(D;). As usual the multiplication is opportunis-
tic, and if Dy = Ry, then the product is (Ry, 0109, D). Remember
we compose the g; from left to right. If the equality is not available,
we get it in two steps. The first to replace (Rg, 02, Do) by (R}, o), D))
representing the same element as (R, 09, Do) and with Dy containing
Ry. This is done in the usual way with binary splittings, but now any
splitting of a leaf v of Ry must be matched by binary splittings at all
leaves of Dy that map to v under o9. Now (Ry, 01, D;) is replaced by
(R}, 0, D)) where Ry is enlarged (if necessary) to R to get R} = D),
using the same care with matching all splittings correctly. The result
is (Ry, 0109, D).

In spite of the careful description above, we will almost always
justify calculations by composing modifications of expressions as illus-
trated in (16.3). The reason is that the calculations take very little
space on the page.

The calculations can become intricate in resolving domains and
ranges. Recall that R is the same as xy. We have that a(b(ed)) —
a((bc)d) is the same as x1, and a(b(c(df))) — a(b((cd)f)) is the same
as ra. The following verifies that z5 = x; oo, Tt is only one line, but
it requires many substitutions to set up.

71

a(b(e(df))) == (ab) (c(df)) = (ab)((cd) ) = a(b((cd)))

Sometimes no substitutions are needed. Below is an efficient ver-
ification of the hexagon relation that appeared as (6) in Proposition
12.18. This will be a relation among elements of .Z, so we use P for
the equivalent 7 ; and R for the equivalent .

(16.6)
a(be) £ (ab)e = c(ab) = (ca)b == b(ca) = (be)a = a(be)

This gives (PR)® =1 or (m120)® = 1 as in Proposition 12.18.

The fact that a variable can show up more than once in the sec-
ond expression of a modification can introduce problems in stringing
together a set of compositions. The following calculation will be useful.
It shows the problem, and also a solution. After the calculation we will
explain why we will systematically ignore the solution.
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In the calculation

ab —5 (arby)(azby) > ((arby)az)by 5
(16.7)

(alb1)a2 —P> a2(alb1) —R> (a2a1)b17

the introduction of two copies of each of @ and b in the first modification
creates problems for the modifications that follow. We resolve this by
giving the two appearances different subscripts so that they uniquely
determine positions for the modifications that come after the first one.
The convention will be that as maps of leaf sets, all leaves labeled aj,
for example, map to a in the leftmost expression.

However, (16.7) can be written less carefully as

(16.8) ab—2 (ab)(ab) -2 ((ab)a)b == (ab)a —= a(ab) —Z= (aa)b

and the net effect is unambiguous in the end, showing that that RPK RU
is the modification ab — (aa)b. In all of the calculations that we will

encounter, the result of the calculation will be clear without the use of

extra subscripts on variables.

16.5. Deferments. Before we start work on the presentation of
A, we pause for some infrastructure. The calculation (16.8) shows
that a “deferment” of U can be gotten from the elements in (16.1).
Definition 8.14 describes the deferment of an element f of F' to some
v € {0,1}*. We give an equivalent definition for M.

DEFINITION 16.5. Let g € .# be given as an endomorphism of €
and let v be in {0,1}*. Then the deferment g, : € — € of g to v is
defined by wg, = w if v is not a prefix of w and (vw)g, = v(wg).

For examples, given as expression manipulations, we have the fol-
lowing.
Py:(ab)e — (ba)c
Ry :a(b(ed)) — a((be)d)
Up : ab — (aa)b
Ky :a(bc) — ab
Loy : (a(bc))d — (ac)d

This gives us more to work with. The calculation

ab—% (ab)(ab) 2~ (ba)(ab) X— ba
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gives P = KPF,U. More generally if g : e — ey is an expression
modfication, then

(16.9) er —= (e1)(e1) == (e2)(e1) “—= e

shows that ¢ = KgoU. Similarly g = Lg,U.

We have a variation that will be more important later. Note that
by replacing a variable by an expression if needed, we can guarantee
that in g : e; — eg, the expression e; is not a single variable and thus
splits into e; = e4es. Now we have

(16.10)
% 9 romy 9 ey Ko ooy Ly
e1 — e1e; —= e(eyey) — (ehey)(ehely) —= ey(ehel) —= ehey

showing g = L1 Kygog1U.
We will later use the fact that Uy = RPK RU follows from (16.8).

16.6. Generators. Our generating set will be X = {Fy, Ry, K, U}.
It is possible to start with Y = {P, R, K, U} but it is easier to work
with X. The reader can take as an exercise to show that P, and Ry
can be obtained as combinations of the elements of Y. We will use (X)
to denote the monoid generated by X.

From X we get Y since R = KRyU, and from (16.9) we get P =
KPByU. We also have L = KP from (16.3).

We note that P and P, are their own inverses and we get R™! =
PRPRP from P and R using (16.6), and thus get R;* from Ry and P.
So {P, Py, R, Ry} generates a group. Trivially Ry = PRyP and P, =
PP, P, and in the language of Proposition 13.16 we have {R, Ry, P, P, } =
{z0,z1,m01.m011}. We have shown the following.

LEMMA 16.6. The group V is in (X).

Those who would rather deal with semigroups than monoids might
be bothered by inverses, subgroups and discussions of conjugations that
will come later. It is not at all hard to treat .# formally as a semigroup
and we will indicate how do so in Section 16.8. However, until then we
will be liberal with our use of inverses.

We return to deferments. We have

(ab)ci> (ba)c m b(ac) —2= ac
giving Ko = LR™'P,. And we know that (16.8) gives Uy = RPK RU.
LEMMA 16.7. All deferments of elements of Y are in (X).

PROOF. The generators of V' and their inverses are in (X) and so
V is in (X). From Proposition 13.15, we know that for every u and v
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in {0, 1}* that are not the empty word, there is an element of V' that
carries u€ rigidly to v€. We know that the deferments Py, Ry, Ky and
Up are in (X)), and the conclusion follows. O

LEMMA 16.8. The set X = {Py, Ry, K,U} generates M .

PROOF. Let e; — ey be an expression manipulation. Let n be the
length of ey. Every variable from e; appears no more than n times in
es. Applying U™ to e; gives an expression ez with 2" repetitions of
every variable. Judicious applications of deferments of K and L can
cut e3 to an expression e, which has the same number of repetitions of
each variable as are found in e;. Thus ey reads the same as ey except
that the order and the paretheses might be incorrect. Now order and
parentheses can be rearranged at will by elements of V. But V is
contained in (X), and we have succeeded in transforming e; to es. [

16.7. Deferments from the generators. Our arguments con-
cerning a presentation for .#Z will make use of a systematic method of
defining deferments of the generators. Note that F, and R, are already
generators and we have given definitions of K and Uy in Section 16.6.
Consider g : e; — €5 in .4 and consider the following calculations.

P 9o P
aeq e1a €20 aeq,

(e1b)c i e1(be) —2= e5(be) B, (esb)c, and

(aey)c ., c(aey) i (ca)e; —2= (ca)es L c(aey) L, (aey)c

Now let x be in X. Motivated by the above, if xg, is defined in .#x,
we define x,, = Pz, P, and z¢p, = Rxg,R~ ', and if 1, is defined in
My, we define xo1, = PR 'z, RP. Note that the word in the subscript
is being modified or added to at its left end and not the right.

We already have definitions of Ky and U, in terms of X and since
Py and Ry are of the form g, with v = (), we can use the scheme above
to acquire definitions of Fyy and Ky. Thus we have x( defined for every
x € X. The scheme now gives z,, for each x € X and u € {0,1}*, but
we can say some additional nice things about the scheme.

Let Xy = {x¢ | z € X}. The scheme above gives for each u € {0, 1}*
a word w in the invertible elements P and R so that “conjugation” of
each xy € Xy by that w gives z,. If we let X,, = {z, | z € X}, then the
equality X, = X := {w tzow | 2o € X} makes sense. Further if v is
a word in X, then we can write v, = w™lvow where vy is obtained from
v by replacing each appearance of x € X in v by xy. The resulting v,
is what is obtained by replacing each appearance of x € X in v by x,.
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16.8. Relations. Our aim is to find a presentation for the monoid
A . Relations will take the form w; = wy where the w; are words in
the generators. The power of such a relation will be that for all words
u and v in the generators, we can conclude uw,v = uwqv.

We build a relation set slowly. Instead of the process of previous
chapters where an infinite set of relations was shown to reduce to a
finite set, we work with a finite set of relations and show that they
have infinitely many consequences. We will build a finite relation set
Z in stages by adding new relations at each stage. After each addition,
we will continue to use Z to denote the set of relations accumulated
so far.

As is expected, we only introduce relations that hold in the monoid
A . But we have to be careful to distinguish between relations that are
known to hold in .# and relations that are derivable from the relations
that we have introduced. To notate this distinction, we will label a
relation with |= if the relation is known to hold in .#Z. We will label
a relation with F if the relation follows from our relation set %#. The
set # grows throughout our discussion, but a late change will never
invalidate any early claim that a relation follows from Z.

In spite of the fact that the relation set Z takes a while to stabilize,
we will use .#Zx to denote the monoid presented by (X | #). Since
every relation in & holds in .# and X generates .#, we will have a
homomorphism from .#x onto .#. The goal is to get enough into #
to make this homomorphism a monomorphism.

Our usual process has been to derive a normal form for a word
in terms of the generators, or of elements derived from the generators.
The interest in the following is that this outline is not followed literally.
There is a normal form in the argument but it is hidden and comes in
pieces. For each element of .#, there will be no single expression that
captures the behavior of that element.

16.8.1. Invertiblity relations. From previous observations, we have
PP =1, and (PR)® = (RP)? = 1. This gives inverses for P and R.
We set

X =% = {PP=1,(RP)*=1,(PR)* = 1}.

For those who would prefer semigroup relations we offer the alter-
native

R =R, = {PPr =2PP = 2(RP)* = (RP)*x

(16.11) :m(PR)3=(PR)3$:x|x€X}’
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which is still finite. We set P~! = P and R™! = PRPRP as formal
definitions so that the symbols P~! and R~! can be used in what
follows.

16.8.2. Commutativity relations. The following is clear.

):2 Vge%,VhE,//,gghl :hlgg.

To select from these relations we use from Section 16.7 the sets
Xo = {Poo, Roo, Ko, Up} and Xy = {Pig, R0, K1,U1}. We set

K = {xoyn = 1z | (o, 11) € Xo X X1},
K = :@[ U %0.

Now with g and h representing words in X, we have notations such
as gp or hy interpreted as having each appearance of x € X replaced
by xo or x; as appropriate. The following is immediate from Zc.

F:Vg € Mx,Yh € Mx, goh1 = h1go.
16.8.3. Splitting relations. We first argue that
Vg e H,Ug= gog:U.
Let g : e; — es. We have

€1 T €2 — (e2)(e2),

e1 —= (e1)(e2) =" (e1)(e2) = (e2)(e2).
We set
Hs = {Ux = xoz U | v € X},
K =R\ JHc I Hs.
To argue

F:Vg € Mx,Ug = gog1U
we note that if -: Ug = gpg1U for some word ¢ in X, then

Ugx = gog1Ux = gogixor1U = goxogra1U

by use of the commutativity relations.
16.8.4. Reconstruction relations. From our previous calculation (16.10)
we have that

Vg e M, g=L1Kogog:U.
We set
Hr = {r = L1 Kgzor U |z € X},
K=K A IR U RR.
Now we get
Vg € Mx, 9= L1Kogog:U
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by noting
gr = L1 Kogog1Uz
= L1 Kogogr1zor1U
= L1 Kogorog121U.

16.8.5. Rewriting relations. From this point, no more calculations
with expression modifications will appear. Arguments will be based on
previous calculations and the view of elements of .#Z as endofunctions
of €.

We have arrived at the core of the argument. For motivation,
consider ¢ € .# and an expression Wg with W a word in {K, L}.
We illustrate with an example of sufficient lack of symmetry, such as
Wg=KLKKgqg. For v € €, we have

(WKLKKg= (W)LKKg = (100)KKg = (0100)Kg = (0010v)g

or, in other words, (u*v)g where u* is the word in {0, 1} created from
the reverse KK LK of W = KLKK by the replacements K — 0 and
L — 1. If now g is determined by a function f : A — B between
prefix sets A and B for {0, 1}* so that u* is in A, then «*f is in B and
(u*v)g = (u* f)v for all v. Thus we would have Wg = W' as elements
of M where W’ is the reverse of the word in {K, L} that translates to
u* f under the replacements discussed above.
The reader can verify that the following all hold in .Z.

KU =1,
U1 KKKRy= KK
’ LKKRy = KLK,
(16.12) KKPy = LK,
LKRy = LLK,
LKPy = KK,
LRy = L.
LPy =L,

Note that for each x € X \ {K}, the reverse of the words W used
in front of z in the above form a prefix set for { K, L}*. If we note that
K = K always holds, then we can say that W = () works for x = K,
noting that ) is also a prefix set for { K, L}*.

We set Zw to be the set of relations given in (16.12) above. A
relation K = K is not needed. As usual, we grow Z and set it to

%Z:%[U%CugsuchU%w.

Once again, to view .# as a semigroup instead of a monoid, we could
deal with UK and UL as was done in (16.11).

We claim that a family of relations follow from Z. Specifically for
each g € M x, there is an integer N(g) > 0 so that if W is a word
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in {K, L} with [W| > N(g), then F: Wg = W’ for some word W' in
{K,L}.

The argument starts with those g with |g| = 1 by taking N(K) = 0,
N({U) =1, N(Fy) = 2and N(Ry) = 3. Any word W in { K, L} of length
greater than N(z) as just given is of the form W = W;W, where Whx
appears as a left side of a relation in Zy,. Then Wax = W Woxr = W W'
as desired.

To induct on |g| we consider gz and let N(gz) = N(g)+ N(x) where
it is assumed that N(g) has been defined. Now W with |W| > N(gz)
is of the form W = W W, where |W;| > N(x) and |Ws| > N(g). We
get Wgx = WiWogr = WiW’x and we know that [W W'| > N(z) as
needed.

It will be clear when the presentation of .Z is fully developed, that
the argument for it also solves the word problem. Since the number of
words in {K, L} of length n is 2", this only gives an exponential upper
bound on the complexity of the solution.

16.8.6. Implied relations, I. This brings in the core machinery of
the Thompson groups that deduces infinitely many relations from finitely
many. This machinery alone suffices for Thompson’s group F. It needs
a bit of help in the setting of .#Z which is supplied by the sections sur-
rounding this one.

We currently have a set of relations that reads as

K = %[ U%chf%s'U%RUﬁw.
Let us give this set another name
e%q) I:%]U%CU%SU%RU%W.

We want to define a “deferment” %, of %, for each v € {0,1}*. We
start with %, and the rest will follow easily.

For each g = h in %}, we can insist that each of g and h be written as
fixed words in the elements of X. We now define for each v € {0, 1}*
with |v| > 1, the set %, to be derived from %y by replacing each
g = h in %y by g, = h,, where g, and h, are formed by replacing the
appearancs of x € X with x, as defined in Section 16.7.

We augment Z for the last time and set

B = By U Ry,

We have two claims to make at this point. First we claim that for all
v € {0,1}*, and all g, = h, in %, that F: g, = h,. This is immediate
if v € {0,0}. But it follows inductively on |v| from Section 16.7 that
since every gy = hg in %, is a word in symbols that are deferments
to a location in {0, 1}* that starts with 0, then for |v| > 2 or v = 1,
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the elements of %, are conjugates by a single invertible element of .Zx
(that depends on v alone) of the elements of %,. This holds whether
the monoid relations or the semigroup relations are being used. The
remarks at the beginning of Section 16.8 now apply. This completes
the argument for the first claim.

The second claim justifies the title of this section. We claim

Vg € Mx,Yh € Mx, Vv € {0,1}" <(|—: g=h) = (g, = hv)).

This follows immediately from the first claim and the fact that ev-
ery step in the chain of alterations connecting g to h using relations
in Z can have everything in it defered to v, giving a chain of alter-
ations connecting g, to h,. By the first claim all such deferments are
consequences of Z.

In fact we are going to use nothing of this claim except the following
two special cases.

Vg € Mx,Nh € My,
((Frg=h) = (g0 = ho) A (F: g1 = 1)),

16.8.7. Implied relations, II. We do not need to do this, but as
motivation for a calculation that we will do immediately after, we will
argue that in .Z, we have

Vg e M Nhe M,
(= Kg= Kn) A (= Lg = Lh) = (}= g =h)).

It is easiest to argue from the point of view of actions on €. We
have (v)Kg = (0v)g so Kg = Kh says that g and h agree on all infinite
words that begin with 0. Similarly Lg = Lh says that g and h agree
on all infinite words that begin with 1. The implication follows.

Without adding to # we argue that

Vg € Mx,Vh € My,

(16.13) (= Kg = Kn) A (- Lg = L) = (g =1)).

We have
(F: Kg= Kh) A(F: Lg= Lh),
(F: Kogo = Koho) A (F Ligr = Lihy),
= KogoLigi = KohoLihy,
F: KoL1gog1 = KoL1hohy,
g = KoL190g1:U = KoL1hohU = h.
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We now give a more complicated and weaker statement for conve-
nience. We claim that given an integer n > 0 we have

Vg € Mx Nh € My,
(16.14) (v e fxc. Ly
(Wl =n =+ Wg=Wh)) = (F:g=h)).
This follows by noting that the inner portion
YW e {K,L}*,([W|=n =F:Wg=Wh)
of (16.14) implies
VW e {K,L},([W|=n—-1 = F: Wg=Wh)
by using (16.13) to eliminate the first letter of W.

16.9. Non-relations. In .Z, the set { K, L}* is the free monoid on
K and L. That is two different words in { K, L} are different elements
of .# . This will be used immediately. It follows by seeing what prefix
the two words add to an arbitrary v € € using the coding of the first
paragraph of Section 16.8.5.

16.10. The presentation. We now claim that (X | #) presents
A . There is a homomorphism from .#x to .# and we need to look at
some g and h with the same image in .#. But we use the introductory
remarks to Section 16.8.5 and claim that the identical behavior of g
and h in their actions on € say that there is an integer N > 0 (the
larger of the depths of their domain trees, for example) so that for
each W € {K, L}* with [W| > N, we have Wg = W' and Wh = W”"
with W’ and W” words in {K, L}. But W’ and W” must represent the
same element of .Z, so by the non-relations of Section 16.9 we have
W' = W" as words in {K,L}. Thus Wg = Wh in .#x, and the fact
that g = h in #x follows from (16.14).

17. Categorical squares

This section contains hindsight rather than history.

A very simple assumption on an object X in a category can cause
Thompson’s group V' to be isomorphic to a subgroup of Aut(X). The
assumption is so simple and the result so general, that as remarked in
Section 15, the conclusion can sometimes be of little interest. But the
result does have consequences, and we get a more focused example in
Section 18.

We will show that in any category, if an object X is either the prod-
uct or coproduct of two copies of itself, then there is a homomorphism
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from V' to Aut(X). Since V is simple, this homomorphism is either
trivial or injective.

We give the details in the case of a coproduct and leave the almost
identical argument for products to the reader. From [144], we have the
following.

DEFINITION 17.1. A coproduct of objects A and B in a category C
is an object C' and a pair of arrows a: A — C and 5 : B — C' so that
for any pair of arrows f : A — D and g : B — D, there is a unique
arrow h : C'— D so that the following diagram commutes.

c-B
« g
N
A——=D
f

17.1. The construction. Let X —a>X<6—X be a coprod-
uct. Let (D, o, R) be a binary tree pair as in Definition 8.6. We wish
to interpret D and R as a pair of diagrams. To treat them both, we
let T be a finite binary tree in {0, 1}*.

At each vertex v of T, we place a copy of the object X that we will
denote by X,. For an internal vertex v, we insert the morphism « from
X0 to X, and we insert the morphism S from X,; to X,.

We then do this for both D and R. To distinguish between the
copies of X in D from those in R, we use X for the copies in R. For
each leaf v in T, we put an identity morphism from X, to X,,. For
example the element of V' represented as

SRS

becomes the following diagram where we have flipped the second tree
over a horizontal line for visibility.
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1x

1x

The treatment of the trees D and R now becomes assymmetric.
Each X, in R has a morphism i, from X, to X@ at the root obtained
by composing the arrows in the path from X, to X@ Now for each leaf u
of D there is a morphism -, from X, in D to X@ in R by precomposing
Mo With 1x.

For each vertex w in D, we inductively build a morphism =, from
X, in D to 55@ in R. We already have =, if u is a leaf. If u is not a
leaf of D, and both ~,9 and ,; have been defined, then we have the
following square

Xu 'L Xul

-
o ] l Yul
N

Xuo TX(Z)

which induces the unique 7, from the fact that X, — X, L X

is a coproduct. At the root of D we have a morphism vy from Xy to )?@.
Remebering that the two objects are two copies of the same object, we
have the following.
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PROPOSITION 17.2. If X —%= X S X s a coproduct in some
category, then the above construction creates a well defined homomor-
phism from V to Aut(X).

If X~—X 5 X 15 a product in some category, then a dual of

the above construction creates a well defined homomorphism from V' to

Aut(X).

PRrROOF. Left to the reader where most of the work has been done
for the first claim. Checking well definedness and composition is needed
first, and preservation of identity and inverses follows easily. For the
second claim the reader has to modify the argument that gives a mor-
phism from the top of one tree to the other. O

There is no guarantee that the homomorphism from V' to Aut(X)
is non-trivial. Since V' is simple, the homomorphism is either trivial
or injective. The homomorphism is injective if and only if the image
of the element m; = (/") maps to a non-trivial automorphism
of X. In the first case, a typical coproduct is a “disjoint union,” and
examples of non-trivial homomorphisms abound. In the second case,
products based on sets rarely have switching coordinates result in an
identity morphism.

It is straightforward to verify that K and L in (16.5) from € into
itself expresses € as the coproduct of two copies of itself and that the
corresponding image of V' in Aut(€) is the usual representation of V
as a group of homeomorphisms of €.

18. Jénsson-Tarski algebras

We return to history and present the construction from Jénsson-
Tarski 1961 [119] of an algebra A that is free on both a set of size
one and also on a set of size two. As mentioned in Section 15, this
makes A a coproduct of two copies of itself. From Proposition 17.2,
there is a homomorphism from V' into Aut(A) which is easy to show is
an injection. But V is actually isomorphic to Aut(A), and not just a
subgroup.

We give the construction of the algebra following [119], and then go
on to understand its automorphism group. Oddly, the construct starts
with an object that is a product of two copies of itself in the extremely
general setting of sets and functions between them.

18.1. Definitions. Let X be a set with a bijection o : X — X x X
written on the right. Thus for every z € X, we have za = (zay, xay)
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where the «; are surjections from X to X. Since « is a bijection, it has
an inverse J: X x X — X satisfying

($07 $1)5040 = Zo,
(18.1) (0, 21)Bar = w1,
zaf = (zag, rap)f = z,
for all zg, 1 and x in X.
We can think of oy, a; and § as operations on X where the a; are

unary operations and f is binary. The equalities in (18.1) are then
identities that these operations satisfy.

DEFINITION 18.1. A Joénsson-Tarski algebra (JT-algebra) is a quadru-
ple (X, ag, a1, 3) where X is a set, and where ag, o are unary opera-
tions on X, [ is a binary operation on X, all acting on the right, which
satisfy the identities in (18.1)

A homomorphism from a JT-algebra (X, ag, aq, #) to a JT-algebra
(X', af, af, f') is a function h : X — X’ so that for each z and y in X
we have h(za;) = (h(z))al, i € {1,2}, and h((x,y)B8) = (h(x), h(y))s'.

A JT-algebra (X, ag,aq,8) is free on a set S C X if for every
JT-algebra (X', oy, o, 5') and function f : S — X' there is a unique
homomorphism A : X — X’ that extends f.

The following is clear.

LEMMA 18.2. Let m : X x X — X be a bijection and let m™! :
X — X x X be denoted zm™" = (xa,xb). Then (X,a,b,m) is a J-T
algebra.

Conversely, let (X, ap, a1, ) be a J-T algebra. Then f: X x X —
X is a bijection and 7' = (zap, vay).

Lastly, the constructions just given connecting the two structures
are mutually inverse to each other.

18.2. A free algebra. It follows from very general principles that
for any set .9, a free JT-algebra on S exists. The general principles can
be learned from [42, Ch. II]. We will benefit from the details of the
construction, so we will build a free JT-algreba on one generator from
scratch. To show freeness, we will use a normal form, and for normal
forms, we need terms.

DEFINITION 18.3. If (X, ap, a1, ) is a JT-algebra and V is a set of
variables disjoint from X U {ag, a1, 8}, then a term over V' is defined
recursively as follows. An element of V' is a term. If x, s and ¢ are
terms, then so are xag, ray and (s,t)5. If v : V — X is a fuction and
T is a term over V, then v is called an assignment and the value of
T(v) in X is defined recursively in the obvious way.
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Some terms can be simplified using the identities in (18.1). If a
term 7' contains a subterm of the form (%o, t1)5a; where ¢y and ¢, are
terms, then this pair of operations can be replaced by ¢; reducing the
number of operations in 7. If a term 7" contains a subterm of the form
(tag, tag)f where t is some term, then this triple of operations can be
replaced by t reducing the number of operations in 7. We say that a
term T is irreducible if T contains no subterm of either of these two
forms.

A term can be viewed as a tree of mixed arity in which a node
labeled § can have two children and a node labeled either g or oy
can have one child. The following configurations in the tree can be
eliminated and replaced by a single node, reflecting applications of the
equalities in (18.1). The parenthsized numbers (0), (1), (2) over the
arrows give a name to each type of replacement.

(o) aq
0. - )\ . - ao@@l ). -
(18.2) )’A — BN — ¢ — ¢

to 1 to t ! tot

Because the term has only finitely many operations (the tree has
finitely many nodes), it is clear that a term can be reduced to an
irreducible. We will show that there is only one irreducible that a
given term can reduce to. We use the diamond condition of Section 47,
Lemma 47.2 and Corollary 47.2.1.

If a term allows for a choice between two replacements, then the
two locations in the tree share no edges or they share an edge. If the
two locations share no edge, then “doing both” brings the two choices
to a single configuration as required by the diamond condition. The
two possible arrangements where the locations share an edge are shown

below.
(7]
NP ) O
Qo Qap o(a) |7 (B)
N B /BN

|
t ot t to ti1to U to 11

The reduction (A) on the left can be accomplished by doing a re-
placement of type (0) or (1) (depending on ), or by doing a type (2)
replacement. So the two methods of reduction give the same result.
The configuration on the right offers three places a replacement can be
done, one each of type (0), (1) and (2). The final reduction (B) can be
accomplished by a replacement of type (2) alone, or one each of types
(0) and (1) in either order. Here, two of the three choices for starting
the reduction process can be combined with another reduction to give
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the same result as the third. It follows from the diamond condition
that every term reduces to a unique irreducible for that term.

The free JT-algebra JT, on one variable is now defined to be the set
of irreducible terms in which the only variable is z. If ¢ and ¢’ are terms,
then tay, tay, and (t,¢')5 can be formed and reduced to an irreducible,
thus defining the expected operations on JT,. The operations satisfy
equations in (18.1) because of the reductions done. The algebra is free
because sending z to any element of a JT-algebra J specifies a unique
place to send every element of JT),, and this is a homomorphism since
the relations in (18.1) hold on J.

There is an alternate way to deduce uniqueness of reduced terms
and freeness of the algebra. Starting from the fact that every term over
x can be reduced to a (not yet known to be unique) irreducible, one
carefully defines the operations «; and [ on irreducible terms covering
all cases so that the result is again reduced. For example defining
(to,t1) breaks into two cases depending on whether or not there is a ¢/
with t; = t'a, i = 1,2. The result is a JT-algebra that the free algebra
JT, must map to, showing that different reduced terms in J7, must
be different elements in J7T,.

18.3. Structure of the free algebra. We look at the structure
of an irreducible term in J7T,. From reduction types (0) and (1) in
(18.2), we know that an irreducible term has no operation «; that
follows (is above in the tree) an operation . Thus the appearance of
the term tree is that of a binary tree whose root contains the value of
the term, and whose leaves are roots of unary trees that are sequences
of applications of the «;. A simple example is the following where the
nodes with two children correspond to the operaton  and the nodes
with one child correspond to aq or a;.

LEMMA 18.4. The function that sends each w € {og, aq}* to zw in
JT, is an injection.

PROOF. The term for zw is a tree of arity one. All such are irre-
ducible, and thus give different elements of JT. U

LEMMA 18.5. Let S C JT, be such that JT), is free on S witha € S.
Then JT, is free on S" = (S \ {a}) U {aay, ac; }.

ProorF. If given f : 8" — J where J = (X, [, a},0) is a JT-
algebra, then let a’ = (aag,ac) fB" and let f: S — J have f' = f on
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(S\{a}) and af’ = @’. Then the unique homomorphic extension f” of
f" to JT, agrees with f on S’, and any homomorphic extension of f to
JT, must take a to a’ and thus agree with f”. O

COROLLARY 18.5.1. For any integer n > 1, there is a set S C JT,
of n elements where JT, s free on S.

DEFINITION 18.6. A set S in JT, for which JT, is free on S will
be called a base or basis for JT,.

LEMMA 18.7. A basis for JT, is a minimal generating set in that
removing any one element no longer generates. The converse does not

hold.

PROOF. If S is a basis with a € S and §" = S\ {a} generates,
then a is a term over S’. Now the function from S into JT, that is the
identity on S” and not on {a} cannot extend to a homomorphism from
JT, to itself. For the lack of a converse, consider y = (x,zag)5. The
set {y} generates JT,, but not freely. d

It will be convenient to refer to the change from S to S’ in Lemma
18.5 as a binary splitting of S at a. A sequence of binary splittings
can be referred to as a binary refinement. It will also be convenient
to identify words in {«ap, a1 }* with the vertices of the complete binary
tree 7. A finite sequence w = wowy - - - w,_1 over {0, 1}* corresponds to
Qg Oy, ** * Q. Finite subtrees of T will be thought of as collections
of words in {ag, oy }*.

PROPOSITION 18.8. If U # 0 is a finite subset of {cg,a1}*, then
JT, is free on xU = {zw | w € U} if and only if U is a prefiz set for
{ao, a1} and thus the leaf set of a finite tree Ty .

PRrROOF. The correspondence between prefix sets and leaf sets of
finite trees is covered in Lemma 8.8. Assume that U is a prefix set for
{ap, a1}*, and the leaf set of the finite tree Ty;. Each caret in Ty is
a triple of the form (u,ucg,ua;) where u is a proper prefix of some
element of U. The tree Ty can be built from the trivial tree by a
sequence of binary splittings. By inducting on the number of carets
in Ty, it can be seen that zU is obtained from {x} by a sequence of
binary splittings, and that Lemma 18.5 implies that JT} is free on zU.

For the inverse, the characterization of Lemma 7.2 says that if U is
not a prefix set, then for some w € {ag, ;1 }*, either w has no prefixes
in U or at least two prefixes in U. If p # ¢ from U are prefixes of w,
then (say) p < ¢ and ¢ = pv for some non-empty v in {ag, a3 }*. Now
in JT, there are y and z with z # yv. So a function from zU to JT,
taking xp to y and xq to z cannot extend to a homomorphism.
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If no w € {ap, @; }* has more than one prefix in U, but some w €
{ap, @1} has no prefixes in U, then the elements of U are pairwise
orthogonal and there is a finite prefix p of w orthognal to all elements
of U. By Lemma 8.11 there is a tree T" with U U {p} in its leaf set
L. From the forward direction of this proposition, xL is a basis for
JT,. But it is not a minimal generating set since U C L generates
JT,, violating Lemma 18.7. 4

18.4. Automorphisms.

PROPOSITION 18.9. For every automorphism n of JT, there is a
triple (U,0,V) where o : U — V is a bijection of prefix sets for
{ap, a1} and n is the unique homomorphic extension to JT, of o' :
xU — 2V defined by (zu)o’ = x(uo). Conversely, every such bijection
o:U — V induces an automorphism of JT.

PRroOOF. Let n be an automorphism of JT,. Then JT, is free on
{zn}, and Lemma 18.4 and Proposition 18.8 apply in that sending
w € {ag, a1} to xnw is an injection, and if U is a finite subset of
{ag, an}*, then JT, is free on anU = {anw | w € U} if and only if U
is a prefix set for {ag, aq }*.

The element 7 is a term over {x} and we let T be the binary tree
part of the term from whose leaves the unary parts of the term are
hung. The paths in T from the root to the leaves are words in {«g, a1}
that form a prefix set U for {ag, oq }*, and 2nU = (zU)n is a basis for
JT,. The unary trees attached to the leaves of T express (zU)n as zV
where V must be a prefix set for {ag, a; }* by Proposition 18.8 because
(xU)n is a basis for JT,.

We have (zU)n = zV, and if we set 0 : U — V to be such that for
all w € U we have z(uo) = (zu)n, then setting ¢’ : 2U — 2V to have
(zu)o’ = x(uo) = (ru)n makes n agree with ¢’ on zU. Since JT, is
free on zU, n must be the unique extension of ¢’ to JT.

The claimed converse follows from Proposition 18.8. U

The techniques in the proof of Proposition 18.9 also give the fol-
lowing in which (I) is a stepping stone to (II).

ProposITION 18.10. (I) If B is a finite basis of JT,, and A is a
binary refinement of {x} with |A| = |B|, then there is a binary refine-
ment of B that is also a binary refinement of A. (II) Any two finite
bases of JT, have a common binary refinement.

ProoF. (I) Let 8 be a bijection from A to B. There is a prefix set
S for {ag, a1}* with A = S. The automorphism 7 taking A to B with
bijection § shows that B = An = (zS)n = znS.
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The proof of Proposition 18.9 applied to zn lets us conclude that
for some prefix sets U and V' for {ag, oy }* we have anU = zV. Now S
and U are prefix sets applied to xn and S and V' are prefix sets applied
to z, and these prefix sets can be viewed as leaf sets of trees. If we
form binary refinements of xnU = xV we are simultaneously enlarging
the trees for U and V. We can make a refinement deep enough so that
the corresponding enlargements of the trees for U and V' each contain
the tree for S. This refinement of xnU = xV will then be a common
refinement of A = xS and B = znS. This proves (I).

(IT) Enlarge the smaller basis by Lemma 18.5 if the bases are not
of the same size. Then an automorphism applied to both carries one
of them to a refinement of {x}. This reduces (II) to (I). O

In the following, we take matched binary splittings of bijections
between prefix sets for {ag, a1 }* to be defined in parallel to Definition
7.4. We also take the following to be clear.

LEMMA 18.11. Triples of the type (U,0,V) as in Proposition 18.9
that are related by matched binary splittings induce identical automor-
phisms of JT.

THEOREM 18.12. The group Aut(JT),) is isomorphic to V.

ProOF. The bijection from {0, 1}* to {ay, o }* induced by sending
i € {0,1} to ay, in turn induces a bijection from triples (U, o, V) with
o : U — V a bijection of prefix sets for {0,1}* to triples (U’,o’, V")
with ¢’ : U’ — V' a bijection of prefix sets for {0, 01}*. This takes
matched binary splittings to matched binary splittings, and so induces
a well defined function from V' to Aut(JT,). It is clear that this is a
homomorphism which must be surjective by Proposition 18.9. From
Lemma 18.4, one can show that the homomorphism is not trivial, and
thus must be injective since V' is simple. O

REMARK 18.13. As mentioned in Section 15, the autmorphisms
of JT, and generalizations were considered by Smirnov in 1973 [179].
In earlier papers Smirnov gave algebras such as J7T, and some gen-
eralizations the name “Cantor algebras” because JT, was based on a
bijection from an infinite set to a direct product of two copies of itself.
A particular (and recursively computable) example of such a function
is Cantor’s function from N x N to N that “counts” the elements in
N x N by running diagonally through the pairs starting at (0,0) and
counting the pairs (m,n) with m + n = k before counting the pairs
with m +mn =k + 1. See Cantor 1895 in [44] Section 6, proof of (8) on
Pages 106-107.
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Not only is V' isomorphic to Aut(JT}), but the Thompson monoid
A is isomorphic to the monoid of endomorphisms of JT,. See Theorem
1.1 of De Witt-Elliott 2023 [194].

19. Splitting homotopy idempotents

We will show how Thompson’s group F' separates those unpointed
homotopy idempotents that split from those that do not. As in Section
15, we let ~ be the relation “homotopic to” and in the category of
pointed, connected CW complexes we call a morphism f: X — X a
homotopy idempotent if f2 ~ f. Such an f is said to split if there
are morphisms d : X — Y and v : Y — X so that, composing right
to left, ud ~ f and du ~ 1y. Note that in any situation where maps
d: X - Y and u:Y — X are given where du ~ 1y, then setting
f =ud gives f? = (ud)(ud) = u(du)d ~ ud = f.

If the homotopy from f? to f keeps the basepoint of X fixed
throughout the homotopy, then f is a pointed homotopy idempotent
and it splits. This fact has nothing to do with F' and we refer the
reader to Theorem (2.1) of Hastings-Heller 1981 [102] for one proof.
The reader should note that one of the mentions there of ud should read
du. A different proof that factors through the Brown representability
theorem is hinted at in the paragraphs following the statement of The-
orem 1.3 in Heller 1981 [105].

We will be concerned with the case where the homotopy H : X X
0,1 — X from f to f? does not preserve the basepoint. That is,
the homotopy connects morphisms in the category, but is not a path
through morphisms in the category. To make the statement of the
main result precise, we expand on the discussion in Section 15. We
assume for all #z € X that H(z,0) = f(z) and H(z,1) = f*(z). We
let p be the basepoint of X, and we let « : [0,1] — X be the loop
at p defined by «(t) = H(p,t). If 8 :[0,1] — X is another loop at
p, then with 8 : [0,1]2 — X x [0,1] acting as (s, t) = (8(s),t), the
composition of 3 with H shows that we have f28 ~ a~'(f3)a. With
C,, the inner automorphism of (X, p) given by conjugation by a, we
have that f2 = C,f.. In the language of Section 10.2, we have that
(m1(X, p), f«, @) is a group with a conjugacy idempotent.

With o the shift homomorphism on F' taking each x; to ;. 1, Propo-
sition 10.2 gives a unique homomorphism 7 : F' — (X, p) which acts
as a morphism of groups with conjugacy idempotent from (F, o, xq) to
(m1(X, p), fe, ). We can now state the following whose proof shows
the entanglements of F' in the situation.

THEOREM 19.1. The following hold.
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(1) With the notation as above, and where f is an unpointed ho-
motopy idempotent, we have the following alternatives.
(a) In the category of connected, pointed topological spaces, if
n 1s an injection, then f does not split.
(b) In the category of connected, pointed CW complexes, if n
1s mot an injection, then f is unpointed homotopic to a
pointed homotopy idempotent and thus splits.
(2) In the category of connected, pointed CW complexes, there is
an unpointed homotopy idempotent that does not split.
(3) Ewvery homotopy idempotent (pointed or not) on a finite di-
mensional CW complex splits.

Item (3) will be proven later as Theorem 28.9.

PRrROOF. (la) With the notation as above, and with {zg, 21} the
usual two element generating set for F', we have

n(x;) = no'(xe) = fin(ze) ~ fla for all i > 0.
Since 7 is assumed to be injective, no two f‘a are homotopic. But
if f splits, then there is a space with basepoint (Y, q) and maps d :
(X,p) = (Y,q) and u : (Y,q) — (X,p) so that du ~ 1y and ud ~ f.
Thus the following diagram homotopy commutes.

xtoxtox

| A A

Y —Y —Y
1y 1y

If we let G = m(X,p) and H = m1(Y, q), then the following diagram

commutes.

ar.q

G-I
o LN e
-
From this it follows that
fPa~ flla] = wipd.[a] = u.di[a] = f.[o] ~ fa,

contradicting the injectivity of 7.

(1b) The following argument is adapted from the proof of 5 = 1 in
Theorem 9.2.2 of Dydak-Segal 1978 [65].

If 1 is not an injection, then the image of 7 is abelian and all the
x; with i > 1 have the same image under 1. In particular, fa ~ f2a.
We will essentially show that by dragging the base point around the
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reverse of o, we can homotop f to a pointed homotopy equivalence.
The argument takes several steps.

We will use f —= f? to sybolize the fact that f is homotopic to
f? under a homotopty that drags the basepoint around the path a. If

we follow the homotopy by f then we get a homotopy from f? to f3
that drags the basepoint around the path fa. This is symbolized by

f? LN f2 . Doing this once more lets us write down the following
string of symbols.
f : f?

Ja fPa

f f

(fo)(f?a)
However, fa ~ f?a and we make the seemingly odd choice to point
out that this implies (fa)(f%a) ~ (f?a)? = f?a? where o? refers to
the concatenation of two copies of the loop o and f? is simply the
composition of f with itself.

By dragging the base point around the reverse of a2, we build a
homotopy J from f? to a map ¢ : (X,p) — (X, p) and can denote this

situation by g —%> f2 . If we apply J to the left factor of gg = g2, we
2062

get ¢? —a2>fzg . and if we follow J by f2, we get ngf—> . We

now have the following.

Ja fPa

f - f? f3 I
f2012
042 f2052
a2
g ¢ ——— f%g

From this it is seen that that there is a homotopy from g to ¢ that
drags the basepoint around a loop that is homotopic to a constant. It
follows that g is a pointed homotopy idempotent. Since f ~ f2 ~ g,
we have the first conclusion that f is homotopic to a pointed homotopy
idempotent. We know that pointed homotopy idempotents split, and
so f splits as well.

(2) We build our example from F to fit the situation of (1a). Chap-
ter 8, Section 1 of Spanier 1966 [181] covers the material needed. Let
(X, p) be an Eilenberg-McLane space of type (F,1). There is a self map
f: X — X with f, = 0, and since f, and f? differ by conjugation by
79, we have that f and f? are homotopic under a homotopy dragging
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the basepoint around a loop that represents zy. We may as well refer
to this loop as xo. Now (m1(X,p), f«, %) is a group with conjugacy
idempotent, and the canonical homomorphism n from (F,o,x) is an
isomorphism. By (1a), f does not split. O

20. The associative law

The purpose of this section is to demonstrate the validity of the
statement “Thompson’s group F' is the structure group of the associa-
tive law.” This is not a well defined target, so we will do it twice. For
the first, we will assume that the associative law gives a congruence
relation, and for the second we will assume that it is not.

DEerINITION 20.1. If X is a set, if ~ is an equivalence relation on
X and if O is a set of operations on X, then ~ is a congruence relation
if for every operation f € O, if k is the arity of f, if (a;) and (b;),
0 <i < k, are two k-tuples in X, and if a; ~ b; for 0 < i < k, then
f(ao, Ce ,ak,l) ~ f(b(], e ,bkfl).

If H is a subgroup of G, then “living in the same left coset of H”
is an equivalence relation on GG which is a congruence relation for the
group multiplication if and only if H is normal in G. The relation =
is always taken to be a congruence relation.

20.1. If the associative law is a congruence relation. The
material below is extracted from Dehornoy’s papers 1989 [53], 1993
[54], and 1996 [55]. The discussion will allow us to give an interesting
infinite presentation for F.

If the associative law is given a direction, then it “acts” on fully
parenthesized expressions. As in Section 16, we can associate a fully
parenthesized expression with a partition of the Cantor set, and so
an application of the associative law can be turned into an action on
the Cantor set. This action is invertible, reflecting the fact that the
associative law works both ways. Since we are taking the associative
law to be a congruence relation, the law can also act on subexpressions.
We now give formal details for building a group from the associative
law.

We already have a symbol for one direction of the associative law
from Secction 16, namely R : a(bc) — (ab)c. As noted in that section,
this corresponds to z¢o € F whose action on the Cantor set is deter-
mined by the prefix set map 00 — 0, 01 — 10, 1 — 11. Thus R (and
its inverse) belong to the group that we are building.

The associative law can act on subexpressions, so given any position
in an expression, if a(bc) appears in that position, we can replace that
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appearance by (ab)c while leaving the rest of the expression fixed. This
translates to putting in our group every deferment R, of R acting as
u00 — u0, u01 — u10, ul — w1l and as the identity on every v with
v L u.

We call the set S = {R, | u € {0,1}*} the symmetric generating set
of our group, and we declare that the group generated by S to be the
structure group of the associative law. Whether this term is acceptable
to the reader is entirely up to the reader. Of course since S consists
of xy and its deferments, we have that S C F. Since xo and x; are in
S, we have (S) = F. We can pretend not to know about F', but to do
so completely will be confining. The argument just given depends on
knowing about the action of F' on the interval or Cantor set. We will
give an argument based only on presentations. We do so because the
presentation based on the symmetric generating set is interesting.

The elements of S satisfy the following relations.

(Cu) R,R, = R,R, vlu
(Cuoo) Rooy Ry = RuRoy u = 00v
(Cuor) Ro1o Ry = Ry Ry u = 0lv
(Cu1) R, Ry, = RyRi1y u=1v
(Ad) RyR, Ry = R, u e {0,1}"

The relations (C,) through (C,;) follow because they express how
R, conguates or commutes with the actions of other generators where
the fundamental triviality of Section 2.2 applies. The last relation can
be verified any number of ways, but the following is efficient. It verifies
the relation Ay, but it translates to all other locations.

a(b(ed)) —2= a((be)d) —2= (a(be)d) —2 ((ab)c)d

a(b(cd)) —> (ab)(ed) —> ((ab)e)d

Remember that under the order conventions of Section 16.4, the cal-
culation above verifies RyRR; = RR.

Note that all five ways to fully parenthesize a string of four variables
are used in the calculation above. These correspond to the five finite
binary trees with four leaves. Arranging them appropriately at the
vertices of a pentagon and giving each edge a well chosen direction
also verifies the relation (A,). For this reason, (A,) is often called the
pentagon relation. Its fame goes back to (3.5) of MacLane 1963 [143],
and the complex K, of Stasheff 1963 [182].
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PROPOSITION 20.2. With S the symmetric generating set and R the
relations (C.,) through (C,1) and (A,), the group presented by (S | R)
18 1somorphic to F.

PROOF. From the actions of the R, on expressions, we know that
the group presented by (S | R) is not abelian. We attempt to interpret
each Ry as x; of the presentation (9.1). The relations (Cy1) with v = 17,
7 > 0, as applied to the elements Ryi, © € N, give all the relations of
the presentation (9.1) for F' under this interpretation. So by Lemma
9.8, sending each Ry to x; extends to an isomorphism from (S | R)
to F' if we can show that the Ry generate the rest of S modulo the
relations in R.

We induct on the depth of u € {0,1}*. Let A be the subset of S in
the subgroup generated by the R;:, i« € N. All the R, with u of depth
0 are in A. Assume that all the R, with depth u less than k£ are in A.
We will induct backwards on position in the prefix order of Definition
8.1 to get all R, with depth u equal to k in A. For u of depth k, assume
that all v of depth k with u < v in prefix order are in A. Note that 1%
is maximal in prefix order among elements of {0,1}* of depth &, and
we already have R;» in A.

Let w have depth k, u # 1*. Let p be the longest prefix of u ending
in 0, making p = 0. If p = u, then u = ¢0, and R, = Ry = R2R_;'R;*
by (A,). If p < u, then u = ¢011™ for some m > 0 and Rl = Ri01m
or R, = Ryoum = RgRpom R, by (Cuor). In both cases R, is a
composition of elements of the form R, where either w has depth less
than k, or w has depth k and u < w in the prefix order. O

20.2. If the associative law is not a congruence relation. We
assume a fixed countably infinite set of variables. We consider the set
E of pairs (e, e5) where e; and ey are fully parenthesized expressions
on the same finite string of variables where there the string uses no
variable twice. Specifically, the order of the variables in e; and ey are
the same.

If a is a variable used in e; and e, and we replace a in both e; and
es by the same fully parenthesized expression ez so that no duplication
of variables is introduced, then we get new expressions €} from e; and
el from eq so that (€], €5) is in E. We write (e, ez) — (€], €)) and let
[E] be the set of equivalence classes in E under the equivalence relation
generated by —. Under the relationship between expressions and trees
given in Definition 16.2, together with a relation between the classes
just described and representatives of elements of F', it is legitimate to
identify [E] with F as sets.
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If we write e; ~ ey for a pair (e, e2), then we can say that e; ~ e
is an associative law. Note that the symbol ~ is not the equivalence
relation of the previous paragraph. Under the usual interpretation of
an associative law, it is accepted that e; ~ ey would imply €] ~ €} for
all (€],¢€,) in the same class as (ej,ez) in [E]. So we can think of ~
as an attribute that might or might not be possessed by elements of
[E], and that certain elements of [E] are associative laws. We can ask
under what assumptions all in [E] are associative laws.

If A is the subset of [F] for which ~ holds, then with no assump-
tions on ~, A is just an arbitrary subset. But if ~ is assumed to be
an equivalence relation, then A becomes a subgroup of F. For the re-
flexive hypothesis puts all (e,e) in A, the symmetric hypothesis puts
the “inverse” (e, e;) in A whenever (e, es) is in A and the transitive
hypothesis puts (e, e3) in A whenever both (e, es) and (es, e3) are in
A.

Since xg and x; generate F', we see that the assumption that ~ is
an equivalence relation and an assumption that both (ab)c ~ a(bc) and
a((bc)d) ~ a(b(ed)) hold, implies that all associative laws hold. The
usual argument given in courses on basic algebra that the associative
law (ab)e = a(bc) implies all associative laws uses the fact that = is
a congruence relation. Whether this discussion justifies calling F' the
structure group of the associative law is left to the reader’s judgement.

21. End notes

In Section 38, generalizations V,,, of V' from Higman 1974 [107]
are built. In 2009 [17], Birget defines four monoids M, 1, totM, 1,
surM, 1, and invM, , closely related to .#, of which M, ; contains
the other three. The monoid totM,; is the Thompson monoid ..
Further, Proposition 2.1 of [17] states that V},; is the group of units of
all four.

All of these monoids generalize the group V' by emphasizing the
actions on the cones of the Cantor set rather than the entire Cantor set.
But important power is lost if the focus is restricted to actions on only
single cones. Hidden in all structures mentioned so far is the “coproduct
condition” that (when n = 2) if a map f on a cone u€ is restricted to its
two subcones (u0)€ and (ul)€, then those two restrictions determine
f. This condition is captured in the monoid .# by the reconstruction
relations in Section 16.8.4.

Certain inverse semigroups ([129] or Pages 28 ff. of [50]), or the as-
sociated inverse monoids, focus entirely on actions on individual cones.
A semigroup S is an inverse semigroup if for every a € S, there is a
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unique b € S (called the inverse of a) for which aba = a and bab = b.
The archtypical example of an inverse semigroup is a symmetric in-
verse semigroup S for which there is a set A in which each element
a € S has a domain d(a) and a range r(a) so that a is defined only
on d(a) which is then taken bijectively by a onto r(a). A Cayley type
theorem (Theorem 1.20 of [50]) embeds every inverse semigroup into a
symmetric inverse semigroup.

Inverse monoids relevant to the Thompson groups are the poly-
cyclic monoids of Nivat-Perrot 1970 [166] which generalize (to n > 2)
the bicyclic monoid (Example 2 in Pages 43 ff. in [50]). The polycyclic
monoid of rank n acts naturally on the n-ary Cantor set, but its do-
mains (if non-empty) are always single cones. The polycyclic monoids
cannot combine several domains into a larger domain and cannot ex-
press the coproduct condition.

But the Z-linear ring over a polycyclic monoid can combine do-
mains, and the coboundary condition can be captured by a single linear
relation. If this is done, rings of Leavitt 1952-62 [136, 137, 138] are
discovered in hindsight. In fact this was done independently of Leavitt
and of each other in 2004 by Birget [16] and by Nekrashevych [159] (in
a more analytic setting initiated by Dixmier 1964 [60] (Example 2.1)
and developed by Cuntz 1977 [51]). It was observed in [16] and [159]
that the V,, , represent into the resulting structures.

This discussion has nothing to do with the motivations of Leavitt,
Dixmier and Cuntz. Relevant to us are the motivations of Leavitt which
were to find rings over which the rank of free modules is ambiguous.
The Leavitt ring L, = Lz(n,1) parallels the Jonsson-Tarski algebra
JT, in that L, is universal for the property that its free modules of
ranks 1 and n are isomorphic as L,-modules. The representations of
the V,,, into the endomorphism rings of the L,-modules allowed for
the first (and thus far only) complete classification of the V,,, up to
isomorphism. This is the subject of Section 40 and 41.

To round out this discussion, we note that the connections between
the polycyclic monoids and the Thompson groups have been investi-
gated further by Lawson 2007 [130, 131] and 2021 [132]. The Cuntz al-
gebra O,, of [51] can be obtained from a complex-linear version Lg(n, 1)
of the Leavitt ring by adding a suitable norm and taking a completion.
Theorem 1.8 of [17] points out that the monoid M, ; of [17] is a sub-
monoid of the multiplicative part of O,.

In parallel to the word problem for groups, Glass had been working
on the word problem for lattice-ordered groups (see Section 1.3 of [85]
for a definition) since 1975 [84]. In 1981 Glass-Gurevich (Chapter 13
of [85] with a more polished version in 1983 [86]) a finitely presented
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lattice-ordered group is built with an unsolvable word problem. The
construction is motivated partly by McKenzie-Thompson [152], and
uses the representation of arbitrary computable functions found there.
But the construction in [152] has torsion elements which cannot exist in
a lattice-ordered group, so the construction departs from [152] consid-
erably. Interestingly, a corollary is given that there must be a finitely
generated lattice-ordered group with an unsolvable word problem that
is 1-related as a lattice ordered group.

Another set of irrational slopes, the integral powers of the golden
ratio, was introduced in Cleary 2000 [48] where finiteness properties
are proven. This group (with its 7" and V' counterparts) are further
studied in Burillo-Nucinkis-Reeves 2021 [40] and 2022 [41].

The exact lengths from Fordham’s thesis [71] are not always needed
to make geometric observations, and easily obtained approximations
sometimes suffice. See for example Burillo 1999 [38].

It took time for various groups of people working with Thompson’s
groups to become aware of each other. The group F' is written up in
detail in Section 6.2 of the book Dydak-Segal 1978 [66] with no mention
of Thompson, and there is also no mention in the 1981 and 1982 papers
of Hastings-Heller [102] and [103]. Thompson is mentioned prominently
in the introduction to Brown-Geoghegan 1984 [36].

The paper [36] also verifies Geoghegan’s conjecture that H™(F, ZF') =
0 for all n, and we note, but do not prove this in Chapter 4.
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22. Introduction

"Much of this chapter will be concerned with finiteness properties
of groups. See the introduction to Chapter VIII of Geoghegan 2008
[80] for some useful references. The unpublished Bieri 1976 [12] can
easily be found online. Remarks in the introduction to Bestvina-Brady
1997 [11] give some history. The material in these papers and Brown
1987 [34] covers the notions we will discuss.

Information about members of the Thompson family can be ob-
tained from their actions on complexes. This chapter is an introduction
to the topic. We give three examples of how such complexes can be
built. The first is built for F' from a detailed knowledge of the alge-
braic structure of its positive monoid. The second is built for V' from
its action on the free Jonsson-Tarski algebra. The third is the most
specialized and is also built for F', but it is built from the knowledge
that F'is an initial object in the category of groups with a conjugacy
idempotent. The complexes will be built as simplicial complexes, but
some can also be shown to have a cubical structure. See Section 48
for basics on both kinds of complexes, and comments on the CAT(0)
property that we mention below.

The most common use of the actions of Thompson groups on com-
plexes is to prove finiteness properties. This activity tends to follow a
certain outline that has become quite standard, and we illustrate that
outline with the first complex and give a brief summary in Section 27.3.
The finiteness properties will be defined in Section 22.1.

The first complex is built in Section 25. In Section 26 the complex
is shown to have a CAT(0), cubical structure, and is used to prove
the finiteness properties for F. Using results that lie outside the scope
of this book, we will point out that this also shows that F' has the
Haagerup property and satisfies the Baum-Connes and Novikov con-
jectures.

The second complex is built in Section 27. The complex is used to
derive a finite presentation for V. The calculation of a presentation for
V' by the techniques of Chapter 2 can be quite elaborate. In addition,
the presentation we obtain has a certain simple appeal. The complex
for V' can also be used with the “standard outline” to show that V'
has type F.,, and we point out what must be strengthened in our
description of the outline and give a reference for the details.

The third complex is built in Section 28. The complex was histori-
cally the first complex built for a Thompson group, gives an alternate

IThis chapter is not complete. More material will be added in the future.



22. INTRODUCTION 143

proof of the main results in Sections 25 and 26, and in addition al-
lows for a direct calculation of the integral homology groups of F'. The
construction uses the fact that F' is an initial object in the category
of groups with a conjugacy idempotent to build a complex that is an
initial object for path connected CW complexes that have a homotopy
idempotent. All the facts gathered lead to a direct proof of the last,
unproven part of Theorem 19.1, that homotopy idempotents on finite
dimensional complexes split.

22.1. Definitions. The finiteness properties that will be shown
generalize the group properties of being finitely generated and finitely
presented. Section 7.2 of [80] gives full backbground for the vocabu-
lary and concepts used. We will give some definitions, but they will
use terms that also need definitions and any gaps can be filled from
[80]. Finiteness properties have been used to separate groups in various
classes.

For us, a classifying space or K(G, 1) for a group G is a connected
CW complex X so that m(X) = G and 7;(X) = 0 for all ¢ > 1. The
spaces we will work with will be simplicial complexes within which a
cubical structure can be detected. Any two classifying spaces for a
group are homotopy equivalent ([80, Corollary 7.1.7]).

A group being finitely generated corresponds to having a classifying
space with finite 1-skeleton, and being finitely presented corresponds to
having a classifying space with finite 2-skeleton. Having a classifying
space with finite n-skeleton is referred to as having type F,,. Having a
classifying space with finitely many cells in every dimension is referred
to as having type Fi.

There is a homological version of type F,. A group G is of type
FP, if the ZG module Z has a projective resolution that is finitely
generated in dimensions no greater than n. It is of type F P, if it is
of type F'P, for all n. A finitely presented group is of type FP, if
and only if it is of type F},. This follows from the material in Chapter
VIII, Section 7 of Brown 1982 [32]. Non-implications, including groups
groups of type F'P, that are not finitely presented are given in Section
6.3 of Bestvina-Brady 1997 [11]. See also Section 8.3 of [80].

For a group G, we say that G has geometric dimension oo if there
does not exist a finite dimensional K(G,1). Otherwise the smallest
integer d for which there exists a d-dimensional K (G, 1) is the geometric
dimension of G.

22.2. Facts. If H is a subgroup of G, and G has a classifying
space X of dimension d, then the cover X of X corresponding to H is
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a classifying space for H that is also of dimension d. Thus geometric
dimension is “monotone” in the sense that H < G implies that the
geometric dimension of H is no greater than the geometric dimension
of G. From this we have the following.

PROPOSITION 22.1. The Thompson groups F, T and V all have
geometric dimension oo.

Proor. For all positive integers n, Lemma 5.8 and Corollary 13.7.1
tell us that Z" < F < T < V. The n dimensional torus 7" = (S!)"
has fundamental group Z", has all other homotopy groups trivial, and
has non-trivial homology in dimension n. So any classifying space for
Z" must have non-trivial homology in dimension n and be at least n
dimensional. 0

Thus the claim that F' is of type F. is the best one can hope for.
The following two results show what we must do to prove that F' is of
type Fi.

THEOREM 22.2. A group G has type F if and only if G has type
E, foralln > 1.

PROOF. One direction requires quite a bit of care. See the proof of
Proposition 7.2.2 in [80]. O

For the next statement a non-empty space X is n-connected if m;(X)
is trivial for all non-negative ¢ < n. A non-empty, path connected space
X is k-aspherical if m;(X) =0 for 2 < i < k.

THEOREM 22.3. A group G has type F,, if and only if there is a finite
n-dimensional (n—1)-aspherical simplicial complex whose fundamental
group is isomorphic to G. This in turn is equivalent to the existence
of an (n — 1)-connected simplicial complex on which G acts freely and
simplicially with compact quotient.

PROOF. See the proof of Proposition 7.2.1 in [80] and the remark
immediately following the proof. 0

In this chapter we will show (twice) that F' is of type F... But T’
and V also are of type F,. This will be discussed in Section 27.3.

Sections 23 and 24 are preliminaries to the constructions. Aspects
of the discussion will be applicable to all the complexes built. Section
23 gives more detail about the positive monoid F, of F. Section 24
prepares for the complexes by building categorical structures from F,.
It also locates the cubical structures within the associated simplicial
complexes. Section 25 builds the first complex for F' and Section 26
completes the argument that F' has type F. Section 27 builds a
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complex for V' and derives a finite presentation. Section 28 builds the
third complex. Section 29 contains some final comments.

23. The positive monoid revisited

The positive monoid F, of F' was introduced in Section 11. Here
we consider F), separately from its existence as a submonoid of F' and
generalize it to a category.

A category has both objects and morphisms. The algebraic struc-
ture is in the morphisms. For us the “elements” of the algebraic struc-
ture of a category will be the morphisms.

23.1. Categories of finite and finitary forests. The finitary
forests were defined in Section 11.2.3 as infinite sequences of finite,
binary trees, almost all trivial, and the finite forests were defined in
Section 11.6 as finite sequences of finite, binary trees. The product ®©
of two finitary forests was defined by the formula (11.2), turning the
set F of finitary forests into a monoid. The product ®0, illustrated in
(11.3), is obtained by hanging the tree ©; on the i-th leaf of ® for each
1€ N.

23.1.1. The category of finite forests. If P denotes the set of finite
forests, then the definition (11.2) can be used to define a partial mul-
tiplication on P. If ® and © are now finite forests, then we can form
®O using (11.2) only if the number of leaves of ® equals the number
of trees (number of roots) in ©.

As with any monoid, we can regard F as a category with one object
w whose morphisms are the elements of of 7. We can turn P into
a category whose objects are the positive integers, and where each
P(m,n), the morphisms in P from m to n, consists of those forests
with m trees and n leaves. To be consistent with remarks about about
when the product 0 can be formed, we will compose morphisms left-
to-right. That is, we compose “the wrong way” for a category.

23.1.2. Going between the finite and the infinite. If ® € P(m,n),
then we write @ --- to denote the element of F obtained by following
® by an infinite sequence of trivial trees. We say that ¥ € F is of type
(m,n) if all ¥; are trivial for ¢ > m and the total number of leaves on
the ®;, 0 <i < m is n. Clearly if ¥ € F is of type (m,n) it is of type
(m+k,n+k) for all £ > 0. And if & € P(m,n), then ®--- is of type
(m,n).

In inverse to taking ® € P(m,n) to ® - - -, we can restrict a ¥ € F of
type (m,n) to the first m trees and obtain the element ¥|,, of P(m,n).
As a function on the elements of F of type (m,n), taking ¥ to ¥/, is a
bijection onto P(m,n). As a function on P(m,n), taking ® € P(m,n)
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to ®--- € F is an injection. These are homomorphisms in that if O
is an allowable composition in P, then (&---)(©---) = (®0)---in F.

From the previous paragraph, we know that if ¥ = ®0 in P with
® € P(m,n) and © € P(n,p), then ¥U--- is of type (m,p) in F and
it factors in F as a product of forests of types (m,n) and (n,p). We
will need some reverse information, and this requires facts about the
numbers.

For ® € F, let us write ® ~ (m,n) to mean that ® is of type (m,n)
and m is the minimum for which this holds. Note that & ~ (m,n)
implies that m is one plus the largest 7 so that the i-th root is not a
leaf, and n is one plus the largest 7 so that the j-th leaf is not a root.

LEMMA 23.1. Let @, © and ¥ = ®O be in F with 1 # & ~ (m,n),
1# 0 ~ (p,q) and ¥ ~ (r,s). Then for some t with r < t < s, we
have ® of type (r,t) and © of type (t,s).

PROOF. Because none of ®, © or VU is an identity, we have m < n,
p<qandr <s.

The three cases to consider are n < p, n =p and n > p. If n = p,
then (r,s) = (m,q) and t = n = p works.

If n < p, then with k£ = p—n, we have that ® is of type (m+k,n+
k =p) and ¥ = ®O is of type (m + k,q). But ¢ is one more than the
index of the rightmost non-root leaf of ¥, so m + k is one more than
the index of the rightmost non-leaf root. So (r,s) = (m + k,q) and
t =n+ k = p works.

If n > p, then with k& = n — p, we have that © is of type (n =
p+k,qg+ k) and ¥ = ®O is of type (m,q + k). But m is one more
than the index of the rightmost non-leaf root of ¥, so ¢+ k is one more
than the index of the rightmost non-root leaf. So (r,s) = (m,q + k)
and t = n = p + k works. U

23.2. Properties. The categories F and P have many properties
that we will use. We list the definitions first. We are interested in the
multiplicative (compositional) structure of the morphisms. We use M
to represent an arbitrary category where all variables mentioned are
morphisms. This is partly because morphism starts with M and partly
because some properties are repeats of properties defined in Section
6.1.2 for monoids.

Once the properties are proven, we will be able to build groupoids
of fractions from P and from F. For F, the result will be no suprise and

will be a groupoid with one object (a group) which will be isomorphic
to F'.
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There is a natural partial order < on P and F which will carry over
later to their groupoids of fractions. The order < will dictate some of
the vocabulary that we use in the properties.

DEFINITION 23.2. If fg =h in P or F, we will declare f < h.

Since P and F have identities, we know that < is reflexive and since
P and F are closed under composition, we know that < is transitive.
Since the relations in the presentation from Proposition 11.7 for F
are length preserving, it follows that the only invertible element in F
is the identity. Thus < is anti-symmetric on F and a partial order.
Since fg = h in P implies that the codomain of h is strictly greater
than the codomain of f unless ¢ is a trivial forest, we have that < is
anti-symmetric on P as well and thus a partial order.

The mix of categories, order and algebra will cause certain concepts
to naturally have more than one name. Each will emphasize a different
aspect of the structure. We will never use the categorical terms after
mentioning them once.

In the following there are occasional requirements that certain pairs
of morphisms have the same domain or the same codomain. When
applied to F, this will automatically be true for all pairs. Some of the
definitions that follow are identical to definitions in Section 6.1.2. We
copy them here for the convenience of the reader, and also because a
few of them have extra comments, adjustments, or assumptions.

DEFINITION 23.3. We say that M is left cancellative if ab = ac
always implies b = c¢. We say that M is right cancellative if ab = cb
always implies a = c¢. We say that M is cancellative if M is both right
and left cancellative. With our left-to-right composition convention
in a category, left cancellative is equivalent to all morphisms being
epimorphisms, and right cancellative is equivalent to all morphisms
being monomorphisms.

DEFINITION 23.4. If ¢ = ab, then c is a right multiple of a, and a
is a left factor of c. These are equivlent and are equivalent to a < c.
Furher c is a left multiple of b, and b is a right factor of c.

DEFINITION 23.5. T'wo elements a and b in M have a common right
multiple if ac = bd for some c and d in M. We say that M has common
right multiples if every pair of elements in M with the same domain has
a common right multiple. Common right multiples are upper bounds
under <.

DEFINITION 23.6. If elements a and b in M have a common right
multiple, then we say they have a least common right multiple if they
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have a common right multiple ¢ so that any other common right mul-
tiple d of a and b is also a right multiple of ¢ (that is, ¢ < d). We
say that M has conditional least common right multiples if every a and
b in M with a common right multiple also has a least common right
multiple. We simply say that M has least common right multiples if
every a and b in M with the same domain has a least common right
multiple. A least common right multiple is a least upper bound, and
in a cancellative category, it is a pushout.

DEFINITION 23.7. Left multiples, (shortest) common left multiples,
and having (conditional) greatest common left multiples are defined by
replacing “right” by “left” and replacing “least” by “shortest” in (23.5)
and (23.6), where common codomains are assumed when needed. In
a cancellative category, a shortest common left multiple is a pullback.
The term shortest is used since ¢ being a left multiple of p does not
translate to a relation between p and ¢ under <.

DEFINITION 23.8. We say that c is a common left factor for a and b
if ¢ is a left factor of both a and b. We say that c is a greatest common
left factor of a and b if it is a left factor of a and b and every common
left factor d of a and b is a left factor of ¢ (that is, d < ¢). We say that
M has greatest common left factors if every pair of elements in M with
the same domain has a greatest common left factor. A common left
factor is a lower bound, and a greatest common left factor is a greatest
lower bound.

DEFINITION 23.9. Right factors, common right factors, longest
right factors and having longest common right factors are defined by
replacing “left” by “right” and replacing “greatest” by “longest” in
(23.8) where common codomains are assumed when needed. The term
longest is used since ¢ being a right factor of p does not translate to a
relation between p and ¢ under <.

DEFINITION 23.10. A unitin M is an x € M with a y € M so that
xy and yz are identities (x and y are isomorphisms in a category). We
say M has trivial units if the only units are identities (i.e., all automor-
phism groups are trivial). A length function for M is a homomorphism
to N whose preimage of 0 is contained in the units of M.

The strange sounding conditional properties have uses.
We now start the work of proving properties for F and P.

DEFINITION 23.11. For a forest @ (finite or finitary), we let I(P),
the length of ®, be the number of carets in ®. In F this is the length
of @ expressed as a word in the generators v; (well defined since the
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relations in (9.1) are length preserving). In P this is the codomain
minus the domain.

DEFINITION 23.12. For two forests ® and © with the same domain,
we define the union by (PUO); = ®,;U0O;, the intersection by (PNO); =
$,N0O;, and containment by declaring that ® C © if and only if &, C ©;
for all 7 in the domain of ® and ©. The operations and comparisons are
operations and comparisons of finite binary trees regarded as subtrees
rooted at () of the complete binary tree 7.

LEMMA 23.13. For forests, ® C U holds if and only if ¥ is a right
multiple of ® (i.e., ® is a left factor for U, and equivalently & < V).

PRrOOF. The formula (11.2) makes it clear that a forest is contained
in all its right multiples.

If ® C W, then the concept is that of Lemma 8.4. Let (u;) be the
sequence of leaves of ® indexed in left to right to right order and let
@(u;) be such that @4, is the tree in ® to which u; belongs. For each
u; let ©; = (Wy())y, /i as given in Definition 8.3. Now ¥ = 0. [

The following gives the properties defined above that apply to F
and P, and gives the structure of the promised items.

PROPOSITION 23.14. Under the product/composition formula (11.2),
both F and P have length function | as given in Definition 23.11 , triv-
1al units, least common right multiples, longest common right factors,
greatest common left factors, and conditional shortest common left mul-
tiples. The least common right multiple for ® and © is ® U O. The
greatest common left factor for ® and © is ®NO. If PU = OII is a
common left multiple of ¥ and I1, then the shortst common left mutiple
of ¥ and 11 is 'V = O'I] where ® = (PN O)P" and © = (PN O)O".

ProOOF. That [ is a length function and that all units are trivial
follow from (11.2) and from the definitions of length function and of .

Cancellativity follows for F because the isomorphic F; is cancella-
tive, and it follows for P because ® + ® - - - is a homomorphic injection
that takes trivial forests to the trivial forest.

The claims about ® N © and ¢ U © follow from Lemma 23.13.
Left to show are longest common right factors and conditional shortest
common left multiples. Neither notion cooperates with <. The longest
common right factor will have the largest number of carets. In P, the
shortest common left multiple will have the highest domain.

We first consider longest common right factors. We note that the
greatest common left factor ® N © of ¢ and © finds the largest struc-
ture common to ¢ and © “starting at the roots.” Finding the longest
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common right factor does the same “starting at the leaves.” The basic
common structure at the leaves is a matched pair of exposed carets.
Distinct exposed carets in a single forest must be disjoint. This will be
used with the diamond condition to find the desired longest factor.

We start with F. If & and © have a common right factor p, then
® = ap and © = bp. If now a and b have a common right factor ¢ # 1,
then gp is a “longer” common right factor of & and ©. We can keep
making the common right factor “longer” until it is no longer possible.
The process must stop at some point because & and © have finitely
many carets. If the diamond condition of Section 47 of the appendix
holds, then there will be a unique longest common right factor.

So now assume that & and © have two different common right
factors r and s expressed as words in the v;. With ¢ the longest common
suffix of r and s, We can get rid of ¢ and assume that the last generators
of r and s are, respectively, some v; and v; with i # j. So we can assume
that ® = fy; and © = gv; as well as ® = f'v; and © = ¢'v;.

The caret that v; attaches to f and g is exposed and has leaves
numbered ¢ and ¢ + 1 in both ® and ©. The caret that v; attaches
to f' and ¢ is exposed and has leaves numbered j and j + 1 in both
® and ©. Since 7 # j and since leaves ¢ and j are left leaves of their
respective exposed carets, we must have that the two exposed carets
just discussed are disjoint in both ® and ©. Assuming i < j, we have
that v;_1v; = v;v; is common right factor of ® and © longer than both
v; and v;. This verifies the diamond condition and shows that there is
a unique longest common right factor.

That longest common right factors exist for pairs in P with common
codomain follows from the existence of longest common right factors
in F using the homomorphic injections and their inverses from the
morphisms of P into F together with Lemma 23.1.

The proof of last point, conditional shortest common left multiples,
will be deferred until after the next lemma. O

The monoid F does not have unconditional common left multiples.
The reader can take it as an exercise that v; and v; have a common
left multiple if and only if | — j| > 2.

LEMMA 23.15. In F and P, if f = pa = qb and g = ra = sb are
common left multiples of a and b, then there is a common left multiple
h of a and b for which f and g are both left multiples.
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PrRoOOF. The diagram below illustrates the hypothesis.

Both a and b are common right factors of f and ¢ and we let h be
the longest common right factor of f and g. For some z, y, w and z
we have all of h = xa = yb, f = wh and g = zh as shown below.

Thus h = xa = yb is the desired common left multiple. O

PROOF OF PROPOSITION 23.14. (Continued.) We use the nota-
tion @V = OII as well as ¢ = (PN O)P" and © = (PN O)O’ from the
end of the statement of the proposition. That ®'¥ = ©'II holds follows
from

(PNO)P'V =dV =0l = (PNO)OTI
and cancellativity.

We claim that f = ®'¥ = ©'II is a shortest common left multiple
of ¥ and II.

If f =wg where g = 2V = ylII, then
OV = f =wg=wzrV, and
Ol = f = wg = wyll,
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giving & = wzx and ©' = wy by cancellation. This makes & = (&N
0)P = (PNO)wzr and © = (PNO)O = (PN O)wy. But (PNO) is
the greatest common left factor of ® and ©, so w =1 and f = g.

On the other hand, if ¢ = ¥ = yII and it is not assumed that f
is a left multiple of g, then by Lemma 23.15 there is a common left
multiple h of ¥ and II for which f and g are both left multiples. By
the above argument f = h and f is a left multiple of g. 0

One power of Proposition 23.14 is that the shortest common left
multiple of a pair can be calculated from any common left multiple of
that pair.

The following lemma is a warmup, and is not strong enough for our
needs. However, it is brief and shows what we are looking for. The
proof only uses the existence of least common right multiples. A more
general version, Lemma 24.6, will come later and its proof will use more
properties.

LEMMA 23.16. In (F,<) and in (P, <), the intersection of two
closed intervals is empty or a closed interval.

PROOF. In the following, new symbols are assumed to exist as used.

Let [a,b] and [c, d] be closed intervals, and assume S = [a, b] N [c, d]
is not empty. Given e € S, we have af = e = cg, b = eh and d = ej.
Thus e is a common right multiple of a and ¢, and in the case of (P, <)
the domains of a and ¢ coincide. Let [ = a U ¢ be the least common
right multiple of a and ¢, giving [ < e. Since e € S was arbitrary, we
have S C [[,b] N [l,d] and b and d are right multiples of every element
of S.

Let m = (J.cq € be the least common right multiple of the elements
inS. Nowforalle€¢ Swehavea<[<e<m<bandc<I[<e<
m < d giving both S C [I,m] and [I[,m] C S. O

23.3. Equivalent words. We discuss the set of words in the v;
that represent a single element of F. There will be much talk of the
carets in a tree, and we use the vocabulary of trees from Section 8. For
convenience we will let k,, denote the caret in the complete binary tree
T whose root is at the vertex u. There is a one-to-one correspondence
between the carets in a tree and the internal nodes of the tree, and we
could refer to the internal nodes. But carets are the main focus here.

Let ¥ be a forest in F and let s, and &, be carets in ¥. We write
Ky > Ky if u is an ancestor of v. Specifically, ,, and &, are in the same
tree ¥; of ¥ and the unique simple path in ¥; from the root of ¥; to
v passes through u. The order > is a partial order. A linear ordering
(most likely different from the order >) of the carets in ¥ is said to
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be consistent with > if x, > k, implies that , comes before k, in the
linear ordering.

Given a word w = v, - - - 1;, in the v; that represents a forest ¥ € F,
we will extract from w a linear ordering of the carets of W that is
consistent with the partial order >. We will do this by setting up a
bijection between the letters in w and the carets in ¥ and using the
linear ordering of the letters given by the sequence w itself.

For 0 < j <k, let w|; = v, ---v4,_, be the prefix of w of length j
and let U|; C W be the forest corresponding to w|;. The forest ¥|;
given by (w|;)v; differs from W|; by a single caret x and we associate
k to v;. This is a bijection from the letters in w to the carets in ¥ and
we carry the order on the letters in w over to the carets in W by this
bijection. The linear ordering of the carets in ¥ induced from the linear
order of the symbols in w and the bijection just described is consistent
with > on the carets of W. This is because for each j, all the ancestors
of the caret added by v; to ¥|; must already be in W|; and must have
been introduced by generators in w|;.

On the other hand, given a linear ordering of the carets in ¥ consis-
tent with >, we can build a word in the v; that leads to that ordering.
If we redefine ¥|; to now be the set of carets given as the first j carets
in the given linear ordering, we can claim that W|; is a forest with
U|; C W. This is because the requirements of consistency with > force
U|; to be prefix closed. We have the following which is left to the reader
to check.

LEMMA 23.17. For ¥ € F, the following hold.

(1) Taking a word w in the v; representing W to the linear order on
the carets of ¥ induced by w gives a one-to-one correspondence
from the set of words in the v; that represent U to the set of
linear orders on the carets in VU that are consistent with >.

(2) The set of forests with a unique linear order on the carets con-
sistent with > (and thus a unique word in the v; representing
the forest) are the forests whose only non-trivial tree is a vine.
That is, those forests for which > 1is already a linear order
(i.e., a chain).

(3) For each n > 1, the set of forests with exactly n carets and n!
linear orders consistent with > are those forests with n carets
where every non-trivial tree has exactly one caret. That is,
those forests for which > is an anti-chain.

The forests described by (3) in Lemma 23.17 will be the subject of
Sections 23.4 and 24.3.
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The relations v;v; = ;7511 whenever 7+ < j from the presentation
from Proposition 11.7 for F connect all the words in the v; representing
a given element of F. If the relation is taken as giving two possible
changes v;v; — v;vj11 and v;v;41 — v;1; to adjacent symbols in a word
in the generators, then these induce two possible changes in a linear
ordering of the carets in a forest that are compatible with >. It is
seen that such changes are reversals of the order of two carets that are
adjacent in the linear ordering. We get the following consequence.

LEMMA 23.18. For ¥ € F any two linear orderings of the carets in
U that are compatible with > are connected by a chain of linear order-
ings compatible with > in which passage from one ordering to the next
is accomplished by a transposition of consecutive carets in the linear

ordering, induced by a relation from the presentation from Proposition
11.7 for F.

23.4. Elementary elements.

DEFINITION 23.19. In F or P an elementary element is a forest in
which each tree has zero or one carets. In P, we use A,, : n — 2n to
denote the elementary forest of n trees in which every tree has exactly
one caret. In F, A, --- (using the notation ®--- of Section 23.1) is
then the finitary forest in which only the first n trees are non-trivial
and each of these has exactly one caret.

LEMMA 23.20. Factors of elementary elements are elementary. There
are exactly 2" left factors of A, -+ and A,,.

PRrOOF. The first sentence follows from Lemma 23.13. The second
follows from the fact that ® C A, is determined entirely by which of
the n trees of ® are non-trivial. O

The next lemma adds detail to (3) of Lemma 23.17.

LEMMA 23.21. In F, the element A,, - - - is represented by exactly n!
different words in the v; of which one is the normal form vovovy - - - Vay_o
and another of which is vyV,_1 - - - 111y.

PROOF. The count n! comes from Lemma 23.17, and it is easy to
check that the claimed forms represent A,,. O

24. Two groupoids of fractions

We will use the conclusions of Proposition 23.14 to embed P and F
in groupoids of fractions. The conclusions in Proposition 23.14 mimic
the assumptions needed in Ore’s theorem which embeds a cancellative
semigroup with common right multiples into a group of fractions.
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The embedding of F into a groupoid and the properties of that em-
bedding will duplicate some of the results about F' that were obtained
in Chapter 2.

This exercise can also be viewed as applying the constructs in
Gabriel-Zisman 1967 [76]. The restrictions (a—d) from Page 12 of [76]
are all satsified. Restrictions (a) and (b) are satisfied because we will
invert all morphisms, the existence of common right multiples is ex-
actly (c), and cancellativity is stronger than (d). After we prove the
validity of the construction we will explain the difference.

The Ore construction has only to do with the properties in the
conclusions of Proposition 23.14 and little to do with the exact nature
of the morphisms involved, so we axiomatize the situation. We continue
the practice of composing in left-to-right order.

DEFINITION 24.1. An Ore category is a category where every mor-
phism can be cancelled on the right and the left and where any two
morphisms f and g with the same domain have morphisms p and ¢ so
that fp = gq. A groupoid is a category where every morphism is an
isomorphism.

The setting of the theorem below is mildly more abstract than the
setting (semigroups) of the classical Ore theorem [50, Theorem 1.23],
but in spite of that the proofs can be made identical. The proof below
differs considerably in style from the proof in [50] but is quite tradi-
tional. Further we assume common right multiples, while [50] assumes
common left multiples (there called right reversible).

THEOREM 24.2 (Ore). Given an Ore category C, there is a groupoid
C* with the same objects as C and a functor K : C — C* with the
following properties.

(1) K is the identity on the objects.

(2) Every morphism in C* is of the form K(f)(K(g))~! for some
morphisms f and g in C having the same codomain.

(3) K is injective on the morphisms.

PROOF. We set objects of C* to be the objects of C' giving (1)
by definition. Morphisms of O will be equivalence classes of pairs
(f,g) with f and g morphisms of C with the same codomain. We
need to define the equivalence relation ~ that will be put on the pairs.
If (f,g) is a pair of morphisms from C' and j is a morphism of C
so that the composition fj exists, then gj exists as well, and we write
(f,9) = (fj,g7). Welet ~ be the equivalence relation generated by —.
To keep control of notation we will not invent a notation to distinguish
between a pair and its equivalence class.
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We define the domain of a pair (f,g) to be the domain of f, and
the codomain of the pair to be the domain of g. Composition is op-
portunistic based on the special case: (f,g)(g,h) = (f, h). The general
case uses one of the hypotheses of an Ore category and repeats an ar-
gument used many times with F. If we want the product (f,g)(h,k),
we note that g and h must have the same domain, and we can take p
and ¢ with gp = hq and set

(f,9)(h, k) = (fp, gp)(hq, kq) = (fp, kq).

If we use r and s with gr = hs to obtain (fr, ks) for the composition,
then we need to show (fp,kq) ~ (fr,ks). But p and r have the same
domain and there are t and u with pt = ru. Now

(24.1) hqgt = gpt = gru = hsu,
and h can be cancelled from the left to give ¢t = su. Now we get

(fp,kq) — (fpt kqt) = (fru, ksu) < (fr, ks),

and composition is seen to be well defined. Associativity of composition
is straighforward now that well definedness is established. It is also
immediate that for an object X, the pair (1x,1x) is an identity on X
in C*, and thus equally immediate that the inverse of (f,g) is (g, f).
So C* is a category and a groupoid.

Before defining the functor K, we prove the following.

Cram 1. If (f,g) ~ (h, k), then there are morphisms p and q in P
so that

(f,9) = (fp,gp) = (hq, kq) < (h, k).

We discuss the relation between ~ and —. It is clear that —
is reflexive by letting 7 be an appropriate identity in the definition
given for —, and it is straightforward that — is also transitive. Thus
(f,g) ~ (h,k) occurs when the two pairs are connected by a string of
alternations of — and <. It suffices to show that any < - — can be
replaced by — - <. To that end we start with (fa,ga) < (f,g) —
(fb, gb). Now there are p and ¢ so that ap = bq, and we have

(fa,ga) — (fap, gap) = (fbq, gbq) < (fb, gb),

establishing the claim.

Now that Claim 1 is established, we point out that not only is it
clear that all pairs (k, k) act as identities, but the claim shows that
they are the only pairs to do so.

We start defining our functor K by setting it to be the identity
on the objects as promised. Now given a morphism f in C, we let
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K(f) = (f,1x) with X the codomain of f. This cooperates with our
definition of K on objects.
Now given f: X - Y and g: Y — Z in C, then we have

(f,1y)(9,12) = (f9,9)(9,12) = (fg,12).

Item (2) is seen by noting that since a morphism (f,g) in C*
has some common codomain Y for f and g, we can write (f,g) =
(f1v)(1y, 9) = K(F)(K(g)".

For the claim of injectivity, if both f and g are from X to Y and
(f,1y) ~ (g,1y), then from Claim 1 there are p and ¢ with

(f,1y) = (fp,p) = (99, 9) < (9, 1y)
forcing p = q, fp = gq = gp and f = g by canceling p on the right. [

Note that the above argument used cancellation on the left for
well definedness of composition and cancellation on the right for the
injectivity of K. Cancellativity on the left can be weakened and is done
so in [76]. The assumption (d) on Page 12 of [76] is (after adjusting
for the reversed order of composition) that if f, g, h are morphisms of
C with hf = hg, then there is a morphism w so that fw = gw. Now
after (24.1), we can write gtw = suw and with the given pt = ru we
can write

(fp,kq) — (fptw, kqtw) = (fruw, ksuw) < (fr, ks).

This wasn’t incorporated into the statement of the theorem since we
don’t need the generality.

Theorem 24.2 did not use several properties of P. If we take them
into account, we get the following. In the following we will drop the
symbol K and assume that in C* that morphiusm symbols such as f
or g~! indicate that f and g come from C. We also use |f]| for the
length of a morphism f when there is a length function.

PROPOSITION 24.3. Assume that an Ore category C' has a length
function, conditional shortest common left multiples, and trivial au-
tomorphism groups. Then every morphism in the groupoid C* has a
unique representation pr=' with p and r in C and |p| + |r| minimal.
For this p and v, if gs~' = pr=! also has q and s in C, then there is a
unique morphism y in C so that ¢ = py and s = ry.

PROOF. Let a morphism in C* be represented as pr~! with p and r

from C. Since |p|+|r| is finite, we can assume it is minimal as specified
in the statement of the proposition. We need to show that it has the
rest of the claimed properties.
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1 1

Assume that ¢s=" = pr—" with ¢ and s from C. Then p and ¢ have
the same domain and r and s have the same domain. There are a and
b with pa = ¢gb. We have almost arrived at the situation of Lemma
23.15 and the following simplification of its first diagram which needs
ra = sb if we are to claim it commutes.

p

T
P,

But pr=! = ¢s7! gives r = sq¢"!p so ra = sq¢ 'pa = sq'qb = sb.
So a and b have pa = ¢b and ra = sb as common left multiples, and
Lemma 23.15 gives h = xa = yb, as well as w and z for which p = wz,
q = wy, r = zx and s = zy all hold. This is illustrated below as a
simplification of the second diagram in the proof of Lemma 23.15.

Now wz™! = (wzx)(zx)~! = pr~! is another representation of pr-

with w and z in C. But unless = 1, we have |w| + |z| < |p| + |r|. So
w=mpandr =2z Now q=wy and s = zy get rewritten as ¢ = py and
s = ry as desired. The uniquenss of pr~! follows from assuming that
lq| + |s| = |p| + |r| which gives y = 1. O

1 1 1

We have arrived at the groupoids we want.

COROLLARY 24.3.1. There is a groupoid P¥ whose objects are the
non-negative integers and whose morphisms from m to n are equiva-
lence classes of pairs of forests (9, ©) where ® has m trees and k leaves
and © is a forest with n trees and k leaves. Sending a finite forest ®
with m trees and k leaves to (®, 1) is an injective functor that is the
identity on the objects from P into P*.

There is a groupoid F* with one object w and whose morphisms are
equivalence classes of pairs of finitary forests (®,0). Sending a finitary
forest ® to (®,1) is an injective functor from F into F*.

The rest applies to both groupoids.
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The equivalence relation is generated by (®,0) — (dV, 0W). Com-
position is opportunistic as discussed in the proof of Theorem 24.2. For
a given morphism there is a unique pair (®,0) characterized by hav-
ing the minimun total number of carets representing the morphism so
that (®,0) — (9',0’) for any other pair (&, 0") representing the same
morphism.

PRrOOF. The fact that the length of a forest (finite or finitary) is
the number of its carets combined with Proposition 23.14 gives all that
is needed to apply Theorem 24.2 and Proposition 24.3. U

COROLLARY 24.3.2. In P*, the automorphism group of each object
is isomorphic to F. The groupoid F* is isomorphic as a group to F.

PROOF. In P*, we have that Aut(1) consists of all pairs (®,0)
where @ and © are single trees with the same number of leaves under
the equivalence relation generated by — as specified in Corollary 24.3.1,
and with multiplication as given in that corollary. But this is /. Now
for n > 1 we have Aut(n) isomorphic to Aut(1) since P* is connected.
The claim about F= is covered by the isomorphism between F and F,
and the remarks in Section 11.2. U

From Corollary 24.3.2 we could try to treat F' as a substructure of
P*. But in Section 24.2 we will extend < to P*, and to F* regarded
as the group F'. It turns out that with this extra structure it is easier
to keep F separate from P*. The groupoid P* will see much use in
spite of this separation.

24.1. Composition of finite forest pairs. If we have two com-
posable morphisms in P*, then each morphism is represented by a
forest pair, and we are faced with the composition (¢, ©)(V, =), where
each entry is a finite forest. We repeat the formalities of the multipli-
cation from Theorem 24.2.

The number of leaves of ® and © must be the same and the number
of leaves of ¥ and = must be the same. To be composable the codomain
of (®,0) or the number of trees in © must be the same as the domain
of (U,Z) or number of trees in ¥. Thus © U ¥ can be formed which
is a right multiple of ©® and W in P. Thus for some I' and €2, we have
O = U(). The number of trees in I' is the number of leaves of © and
thus also the number of leaves of ®. The number of trees in €2 is the
number of leaves of ¥ and thus also the number of leaves of =. Thus we
can form (®I",OI") and (V2, =) which represent the same morphisms
in P* as ($,0) and (¥, =). Now the composition is (®T, ZQ).
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An example follows.

(fon R (RN A )
(24.2) = (/\ N, &) (ﬁ SARAREN )

=S A)

Extra carets corresponding to the forests I' and €2 of the general dis-
cussion were temporarily shown as dotted.

There is more graphical way to compose elements of P¥. We make
no attempt to make this rigorous. A forest pair (®, ©) where the num-
ber of leaves of the two forests are the same can be regarded as a code
for a PL map between intervals of various integral lengths. If the com-
mon number of leaves is k£ and the number of trees of & and © are
m and n respectively, then ® can be viewed as a way to split the m
intervals of length 1 with integer endpoints in [0, m] into & subintervals
whose lengths are integral powers of 2, and © can be similarly viewed
as splitting the interval [0,n]. The pair (®,©) then represents the PL
homeomorphism from [0,m] to [0,n] that takes the k intervals deter-
mined by ¢ affinely, in order, to the k intervals determined by ©. We
represent this pictorally by inverting © and drawing it below ® with
the leaves matched.

The result for the two factors in (24.2) is as follows. The horizon-
tal dotted lines represent PL functions between partitions and not an
identification of intervals.

(24.3)

Reading from top to bottom, the left figure represents a PL. map from
0,2] to [0,2] and the second a PL map from [0, 2] to [0, 4].

Since we read from top to bottom, we can compose the two figures
by placing the right below the left, joining the bottom roots of the left
figure with the top roots of the right figure.

(24.4)

Any occurrence of X can be replaced by ‘ ‘ since the first figure
represents a merge of two intervals followed by a split of the merged
interval. The composition has had no effect on the two intervals.
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If this is applied to (24.4), we get the left figure below. A slight
rearrangement gives the right figure below which is what is obtained if,
in the final pair in (24.2), the right forest is inverted and placed below
the left forest with the leaves matched.

(24.5) M PN

There is no occurrence of ¢ in either (24.4) or (24.5). Such a

figure represents a split immediately followed by a merge of the two
resulting intervals. Were the figure to appear, it could be replaced by
. This move is usually associated to a reduction of a forest pair to the
minimum representative pair promised by Corollary 24.3.1.

24.2. Partial orders on the groupoids. We lift < from P and
F to their groupoids of fractions. From this point, we want to treat
the groupoid of fractions of F as the group F' and it makes more
sense notationally to refer to F' as the group of fractions of its positive
monoid F, rather than of the isomorphic F. This practice starts in
the definition of < on P* and F below.

DEFINITION 24.4. For morphisms f and ¢ in P*, we say f < g if
for some h € P we have fh = g. That is, f < g if f~1g isin P. For f
and g in I, we say f < gif f~lgisin F,.

Since P and F have only trivial units, < is a partial order. We have
the following. Again the requirement of a common domain is always
satisfied in F'.

LEMMA 24.5. If f and g have a common domain in (P%,<) or
(F, <) then they have an upper bound. If f and g also have a lower
bound h, then they have a least upper bound M and a greatest lower
bound m. Specifically, if 0 = h™'f and Qo = h™1g, then Q; and Qo
have a common domain, and M = h(Q2; U Qs) and m = h(2; N Q).

PROOF. For the first sentence, we have f = ®,0;" and g = $,0;*
with the ®; and ©; in F,, or in P so that the ®; have a common domain.
Now Proposition 23.14 gives &, U ®, = fO; U ¢O, as a common upper
bound for fO; and ¢gO, and thus for f and g.

Let fU; = gW¥, with the U; in F, or P be an upper bound for f
and ¢ and assume h is a lower bound for f and g. Then f = h{l;,
g = h&)y with the €; in F, or P. Cancellativity and h$; ¥ = h{y W,
give Wy = Wy, If j is another lower bound for f and g with
f =73, g = 704, then we will also have Q3¥; = Q¥ with all {; in
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F or P. In other words, all lower bounds for f and g create common
left multiples of ¥y and ¥y in F; or P.

Proposition 23.14 now gives ¥; and W, a shortest common left
multiple Q¥ = QLW, in F. or P where ; = (3 N Qy)Q) and Qy =
(21 N Q)05 We claim that m = h(; N ) is the greatest lower
bound for f and g. Taking j as analyzed in the previous paragraph as
a typical other lower bound for f and g, the situation creates another
common left multiple Q3¥; = Q¥ for ¥; and ¥,, so for some z in
F, or P we have that Q¥ = Q| V¥, giving Q3 = 2. Now

h(2 N Q)Q) = h& = f =703 = jz Q)

so jz = h(Q21 N Q) =m and j < m.
Similar arguments make M = h(€2; U)y) the least upper bound for
f and g. O

COROLLARY 24.5.1. If S is a finite set of morphisms in F or P*
that all have the same domain, then S has an upper bound in (F, <)
or (P%,<). If every pair of elements in S also has a lower bound in
(F, <) or (P%,<), then S has least upper bound and a greatest lower
bound in (F,<) or (P*,<).

Proor. This follows inductively from Lemma 24.5. U

We now get the version of Lemma 23.16 that we need. Only slight
changes are needed in the wording of the proof.

LEMMA 24.6. In (F,<) or (P*,<), the intersection of two closed
intervals s empty or a closed interval.

PROOF. Let [a,b] and [c,d] be closed intervals, and assume S =
[a,b] N [c,d] is not empty. Given e € S, we have af = e = c¢g with
f and g in Fy or P. This gives all of a, e and ¢ the same domain
which then must be the domain of all in S. Now with M the least
upper bound of S and m the greatest lower bound, we get S = [m, M|
exactly as in the proof of Lemma 23.16. U

24.3. Cubes. The simplicial complexes (see Section 48 in the ap-
pendix) associated to the posets (F, <) and (P*, <) have subcomplexes
that organize themselves neatly into cubes. These arise from a restric-
tion of the order < that is based on the elementary forests of Section
23.4.

DEFINITION 24.7. For morphisms f and ¢ in F or in P* with
common domain, we write f < ¢ if f~'g is an elementary forest.
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Since f < g holdsif f~'gisin F or P, the relation < is a restriction
of < and is thus anti-symmetric. It is reflexive since the trivial forest
is elementary. However, < is not transitive.

LEMMA 24.8. Let f < g in F or P and let h = f~'g. Then the
closed interval [f,g] = f[1,h] = {fk |1 X k < h} under < equals the
closed interval [f, g] under <. In particular f < j =< g if and only if
f <j<g. If h has n carets, then [f, g] has the structure of an n-cube
whose faces are the closed intervals in [f, g].

PROOF. The equality of [f, g] under < and < follows from Lemma
23.20. Let Supp(h), the support of h, be the set of those i € N for
which h; is a non-trivial tree. Taking j € [1, h] to Supp(j) is a bijection
from [1, h] to the subsets of Supp(h). From Lemma 23.13, this bijection
is an order isomorphism from [1, h] to the subsets of Supp(h) ordered
by inclusion. As remarked in Section 48.9 of the appendix, this gives
[1, h] the structure of an n-cube. The remark about faces also comes
from Section 48.9. O

LEMMA 24.9. The set of closed intervals under < gives (F, <) and
(P*, =) the structure of a cubical complex.

PROOF. The union of the closed intervals is all of P*. It follows
from Lemma 24.6 and from the equality of < and = inside a closed
interval [f, g] with f < ¢ that the intersection of two cubes is empty
or a face of each. ]

24.4. Faces and generators. We give some motivation for the
discussion in this section. The material here will not see use until
Section 28. In Section 28, we will claim that the cubical complex asso-
ciated to (F, <), regarded as a subcomplex of the complex associated
to (F, <), is the universal cover of a classifying space Y for F. Each
cube f[1, k] in the complex of (F, <) will be identified, under the action
of F, to the cube [1,h] in Y. We are thus interested in the structures
of cubes of the form [1, k| and their faces. However, each face [j, k] of a
cube [1, 2] must be understood in the form j[1, j7'k] to see how it fits
into the complex Y.

A cube of the form [1, ] with 1 < h has h elementary. Since we are
working in F' we should think of A as an element of the positive monoid
F,. However we want to discuss placements of carets that correspond
to specific generators, and it is easiest to think of h as a finitary forest.
Thus we will work with the generators 1; of the presentation from
Proposition 11.7 for the monoid F.

We consider an elementary element h. If h has k carets, then f can
be given as a word w in the v; of length &k in normal form. It is easy
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to characterize words in normal form that correspond to elementary
forests. What follows adds information to Lemma 23.21.

If w = v, -+ v, represents h, it is in normal form if the sub-
scripts are in non-decreasing order. If p = v 15, - vy, j < k — 1, is
a proper prefix of w, then we can look at the forest h, corresponding
to p and discuss the placement on h, of the caret corresponding to
Vi;.,- The numbers of the leaves of the caret placed by v;, are i; and
i; + 1. With 4,1 > 4;, the caret placed by v;,_, is disjoint from the
caret placed by v;; if and only if 45,1 > 4; +2. The caret corresponding
to v;,,, will disjoint from all carets in h,, if 7,1 > i; + 2 because i; is
the largest subscript in p. We have the following.

LEMMA 24.10. A word w = v;yv;, -+~ v4,_, in normal form in the
generators of F represents an elementary forest if and only if for all j
with 0 < j <k —1 we have 141 > 1; + 2.

We look at some of the faces of [1, h] and start with the codimension
1 faces. If h has k carets, then [1,h] is a k-dimensional cube and has
2k codimension 1 faces. Let j be such that 0 < j < k. If w =
VigVi, ** * Vi,_, in normal form represents h, then the appearance of v;,
in w corresponds to the j-th caret in h ordered from left to right with
the count starting at 0. One of the faces of [1,h] “orthogonal to”
coordinate j consists of all left factors of h that omit the j-th caret
(the lower face), and the other consists of all left factors of h that
include the j-th caret (the upper face).

The lower face has as maximal element A consisting of h with the
j-th caret omitted and has 1 as minimal element. So the lower face
has the form [1,h5]. The upper face has as maximal element h and
has the forest containing only the j-th caret as minimal element. This
forest is some v, so that with h = v,h’; and the upper face has the form
[vp, h] = v,[1, h]. We need to obtain the value of p and to express h$
and A} in terms of the v;.

We bring in ideas surrounding Lemma 23.18 to change when the
j-th caret is added to the forest h. We are interested in two words that
are not necessarily in normal form that represent h. We start with
W = ViV + V4 -V, in normal form and apply relations from the
presentation from Proposition 11.7 for F.

First we use the relations from Proposition 11.7 in the form of
rewriting rules v, V1 — Vplm When m < n to “move” v;; to the end
of the word. This can be done because each 7, with n > j exceeds ¢,
by at least two. We get that

o

VigViy * Vi 1 Vij 1 —1Vi0—1 " " Vi —1Vi; = Wl
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also represents h. The subword wj represents h; since the forest it
represents has all the carets in h except the j-th caret.

Similarly, we can use rewriting rules v,v,, — Vv, 1 when m < n
to “move” v;; to the beginning of the word. Again this can be done
because the differences between consecutive subscripts in the normal
form are at least two. We get that

Vij—jVigViy * " Vig_Vigyy " Vi = Vij—jw;'
also represents h.

The lower face is [1, k5] where w; represents hZ. The upper face
is v;;;[1, h;] where w represents h;. The upper face is located by its
least vertex v;,_; and its structure is given by [1, h}].

We now simplify the notation and invent two “face operators.” The
word w = v, v;, ---v;,_, in normal form representing an elementary
forest, can be coded by the k-tuple i = (ig, - - ,ix—_1) where ;41 > i;+2
for 0 < j < k —1is assumed. We call such a tuple a cubical tuple. We
define “face operators” as follows.

(24.6) Aj(Q) = Ao, -+ yik—1) = (loy - s ij-1, G541, k1),
D By(i) = Bjlio, -+ iker) = o, g — Lo i — 1)
Now A; codes the structure (but not the location) of the upper face,

and Bj; codes the structure of the lower face.

There are other useful modifications to cubical tuples that will be
seen to arise naturally. Given a cubical k-tuple i, we let o(i) be the
k-tuple obtained from i by raising each entry in i by 1.

We define another modification on cubical k-tuples in two steps.
We will use 0 Ai to denote the (k + 1)-tuple whose first entry is 0 and
whose remaining entries are copied in order from the entries from i and

we let H(i) = 0 A 52(i).

LEMMA 24.11. Ifiis a cubical tuple, then all of A;(i), B,(i), o(i),
and H(i) = 0 Ao%(i) are cubical tuples.

The modifications & and H give a way to systematically run through
all the cubical tuples. Let C; = {(0)}. If C; is defined let C! =
{G(C;y) | i > 1}. If C! is defined let C;,y = H(C)) = {H(i) | i € C!}.

Inductively, we have the following.

LEMMA 24.12. For each n > 1, C,, is the set of cubical n-tuples
that have 0 as the first entry, and C! is the set of cubical n-tuples that
have a first entry greater than 0.
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25. The Brown, Stein and Farley complexes

25.1. The Brown complex. In this section, we build a complex
for F. It is built in stages, starting with a simplicial complex, then
moving to a smaller simplicial complex having the same homotopy type,
and then transforming the second complex into a cubical complex. In
Section 26, the last complex will be analyzed to show that F' is of type
F. The first complex will be a simplicial complex derived from a
partial order on a category. See Section 48.4.

We will work with the groupoid P*. We regard P as a subcategory
of P* identifying it with the image of the functor K from Theorem
24.2. If we want to refer to a morphism in P* we will use traditional
lower case Roman letters such as f, g, etc., but we will continue to use
upper case Greek letters such as @, ©, etc., for elements of P. When we
want the details of an element of P* as a “fraction” of elements of P,
we will write f = @O~ instead of f = (®,0) or f = K(®)(K(0)) .

For each positive integer n, we have a group Aut(n), and since the
groupoid is connected there are (non-canonical) isomorphisms between
these automorphism groups. From Corollary 24.3.2, we know that all
these groups are isomorphic to F'.

For positive integers m and n we let P*(m,n) be the set of mor-
phisms in P* from m to n. Let P{" be all the morphisms in P* with
domain 1. Identifying F with Aut(1), we have a left action of F' on P
by f-g= fg for which each P*(1,j) is invariant.

We turn our attention to the restriction to P of the partial order
< from Definition 24.4 in which f < g if f~1g (which must exist since
both f and g have domain 1) is in P. That is f < g if f7lgis a
finite forest. Note that if for f and g in P we have f < g, then
codomain(g) > codomain(f). The next lemma and corollary restate
Lemma 24.5 and its corollary for P

LEMMA 25.1. If f and g are in (PE,<) then they have an upper
bound. If f and g also have a lower bound h, then they have a least
upper bound M and a greatest lower bound m. Specifically, if ©1 and

Oy are the unique elements in P where f = h©; and g = hO,, then
M = h(@1 U @2) and m = h(@1 N @2)

COROLLARY 25.1.1. If f1, fo, ..., fn are in (P{, <), then they have
a common upper bound. If they also have a common lower bound, then
they have a common least upper bound and a common greatest lower
bound.

As remarked just before Lemma 23.15, there are pairs of elements
in (P <) that have no lower bound.
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The first version of a complex that we are interested in is the sim-
plicial complex (PF, <). It has the following properties.

LEMMA 25.2. The action of F by left multiplication on (PE, <) is
simplicial, free, keeps invariant each P*(1,7) and is transitive on each
P*(1,7). Further (PX <) is contractible.

PRrROOF. The action of F' is on the left and the order structure is
given by an “action” of P on P on the right. The left and right
actions commute and the left action of F' is thus order preserving and
simplicial. From now on, a reference to an action is to the left action
unless stated otherwise.

Since all elements in P* are invertible and the action involves mul-
tiplication in P*, the action is free on the vertices. Since order is
preserved, the vertices of a simplex cannot be permuted non-trivially
by the action. So the action is free on the entire topological realization
of the complex. Multiplication by F' on the left preserves codomain
and so each P*(1, ) is kept invariant. And if f and g come from the
same P*(1,5), then gf ' =h € F and g = hf.

To show that (P, <) is contractible, it suffices to show that every
finite subcomplex is contained in a cone. This follows if we show that
every finite set of vertices has an upper bound. But elements in Pli all
have common domain and Corollary 24.5.1 gives an upper bound. [

The quotient of (P, <) under the action of F is not compact. In
fact it has infinitely many vertices. Our task is to find subcomplexes
with compact quotient with sufficient connectivity properties to satisfy
the reqgirements laid out in Theorem 22.3. It is possible to do so starting
with (P, <), but it is easier to do so if we start with a smaller complex
that is also contractible.

25.2. The Stein complex. We will cut down on the simplices in
(P, <) by cutting down on the partial order. We restrict the relation
< from Definition 24.7 to Pi*. This means that for f and g in P{" we
have f < g if f~'g is in P and is elementary (Definition 23.19). The
relation < is reflexive and anti-symmetric, but not transitive. We give
the complex below its own letter since it will be the complex we work
with.

DEFINITION 25.3. The complex X has P as its vertex set and for
0 <k, achain fy < fi <--- < f will be a k-simplex in X if fy < f3.

Since factors of elementary forests are elementary by (2) of Lemma
23.20, we have f; < f; for all0 <14 < j < k in the above definition. The
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set of simplices in X is closed under taking faces and forms a simplicial
complex.

We are now working with two relations < and =< with only the
first a partial order. We will use interval notation such as [f, g, (f,g],
(f,9), etc., frequently and in all cases the order referred to will be <.
However, the properties of < let us say the following.

LEMMA 25.4. If f < g in P, then for all h and j in [f,g] if h < j,
then h < j.

We need the following concept in order to show that X is con-
tractible.

DEFINITION 25.5. A greatest elementary left factor of a forest W is

an elementary left factor E(¥) of W so that every elementary left factor
of U is a left factor of E (V).

The reader can verify that for every finite or finitary forest ¥, there
is a unique greatest elementary left factor E(¥) and that for each 1,
(E(¥)); is trivial when W, is trivial, and (E(¥)); consists of a single
caret when W, is non-trivial.

PROPOSITION 25.6. The inclusion of X into (P, <) is a homotopy
equivalence, and thus the complex X s contractible.

PROOF. The proof that follows is taken directly from Brown 1992
[35] where certain key elements are attributed to Stein 1992 [183].

We will rebuild (P;F, <) from X by adding to X simplices that are
eliminated from (P, <) by the defining restrictions of <, and will do
so in a way that does not change the homotopy type of X. Note that
if f < g, then [f,g] lies in X. So we are interested in adding to X
intervals of the form [f, g] where f < g but f A g.

Recall that E(¥), the greatest elementary left factor of W, has as
many carets as ¥ has non-trivial trees.

Fix f € PE. For any h in P with f < h, we have h = fV for
some U € P. We let b/ = fE(V) giving f < h/. We note that b’ < h
and that [f,h/] is in X. Also with f < h, we have ¥ not trivial. So
E(¥) is not trivial and f < A'.

Next we show that the open interval (f, g) is contractible as a com-
plex if f < g but f A g. First we map each h € (f,g] to h'. Let (f,g)
denoted the image of restriction of this map to (f, g). Since b’ < h for
all h, this restriction to (f, g) is homotopic to the identity on (f, g). See
Section 48.4. For h € (f, g), we have g = h© = fVO. Since F(V) is an
elementary left factor of WO it is a left factor of the greatest elementary
left factor of WO and we see that A’ < ¢’. But ¢’ < g since f A g, and
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(f,9'1 € (f,9). So the image (f, g)" of (f,g) lies in (f, '] € (f,g), and
(f,¢'] has a maximal element and is contractible.

We now attach intervals in (Pj5, <) that are missing from X.

If an interval [f, g is not in X, then f A g. Let the codomains of
f and g be, respectively, p and q. We know that f~'g is in P, and we
must have ¢ — p > 1 since f A g. We call d = ¢ — p the height of [f, g]
and we induct on d. Thus we assume that d is at least 2 and that the
addition to X of all closed intervals of height less than d has already
been done and has not changed the homotopy type of X. When we add
the interval [f, ] regarded as a complex, the part that has already been
added to X by our inductive assumption is the complex [f, g) U (f, g].
But this is contractible since it is the suspension of (f,g) and we have
shown (f,g) to be contractible. Thus the contractible [f, g] is being
attached along a contractible complex which results in no change in
the homotopy type. This completes the proof. O

The left action of F' preserves < for the same reason that it preserves
<, and so F acts on the complex X. The quotient is still not compact
since X contains all the vertices of (P, <). We obtain complexes with
finite quotients by restricting to subcomplexes of X. At this point
we lose contractibility, but from Theorem 22.3, contractibility is not
necessary. However, the contractibilty of X will be used to establish the
connectivity conditions of its subcomplexes. The following proposition
shows how.

LEMMA 25.7. Let Xo C X7 C --- be a sequence of complexes whose
union 1s a contractible complex X. Fix n > 0. If for some i and
all 5 > 1 the inclusions X; — X,y induce injections on m,, then

PRroOOF. Every singular n-sphere in X; contracts in X and thus in
X; for some j > i. But 7,(X;) = 7,(X;) is an injection. O

We filter X into subcomplexes X; where X, consists of all mor-
phisms in X with codomain no bigger than ¢. We have the following
which satisfies part of the requirements of Theorem 22.3.

LEMMA 25.8. For each i > 1, the action of F on X preserves
X, and the restriction of the action to X; is free, simplicial and with
compact quotient. As extra information, the dimension of the quotient

F\X; is no more than |i/2].

PROOF. From Lemma 25.2 the action of F on (P, <) is free, sim-
plicial, preserves codomains, and is transitive on each set of morphisms
with the same codomain. So the X, are preserved, the action on each
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X; is free and simplicial, and the orbit space F'\X; has only finitely
many vertices. We identify the vertices of F'\ X; with the elements in
[1,7]. Because the action is free and simplicial, we know that for each
f € X, with codomain n, there is a bijection between the simplices in
X; that have f as a vertex and the simplices in F'\ X; that have n as a
vertex. But in X, there is a severe restriction on the simplices that a
vertex can belong to.

Let f be some f; in a chain fy < --- < fi from Definition 25.3, and
assume f has codomain n. Then fy = f® ! and f¥ = f; for some
elementary ® and W. There are only finitely many elementary elements
with codomain n and only finitely many with domain n. Thus f can
be a vertex in only finitely many simplices. But F'\ X; has only finitely
many vertices, so F'\ X; is a finite complex and compact.

A simplex ¢ in X; with least vertex f; of codomain m must be
contained in some [fy, fo¥] with ¥ elementary. The dimension d of
o will be no more than the number of carets k in W. The number of
carets k in the elementary W can be no greater than the codomain m
of fo. Sod < k < m. The codomain of the largest vertex in ¢ must
have codomain no larger than i. So m + k < i. Whether one assumes
that m < |i/2] or m > [i/2], it follows that k£ < |i/2]. O

We will satisfy the remaining requirement of Theorem 22.3 if we
show that for each n > 0 there is an ¢ so that X; is (n — 1)-connected.
Lemma 25.7 will be the key to controlling the homotopy groups of the
X;. Since Lemma 25.7 asks to understand the relationship between
X, and X, simplicial Morse theory will be useful. This is discussed
in Section 48.8 where it is pointed out that an understanding of the
descending links of vertices with respect to a Morse function will be
important. However, before we build a Morse function and investigate
descending links, we transform X from a simplicial complex to a cubical
complex. This makes the analysis of descending links easier. The
analysis will be done in Section 26.

25.3. The Stein-Farley complex. The complex X of the previ-
ous section also has the structure of a cubical complex. Recall from
Definition 23.19 that A, denotes the elementary forest with n carets,
domain n, and codomain 2n. We start with the following.

LEMMA 25.9. If f is in PE with codomain n, then for all g € P
with f < g, we have g <X fA,. Further, if the codomain of g isn + k,
then k < n, and the interval [f, g] has the structure of a k-cube.

PROOF. Every g with f < ¢ has the form ¢ = fU with ¥ = f~1g
elementary of domain n. Thus V¥ is a left factor of A,. From Lemma
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23.20, g = fA,. The second claim follows from ¥ < A,,, and from the
last provision of Lemma 24.8. O

LEMMA 25.10. The collection C = {[f,g] | f,g € PE, f < g} gives
X the structure of a cube complex which is preserved by the action of
F.

PrRooOF. That the collection C' gives X the structure of a cubical
complex is argued as for Lemma 24.9. It has already been observed
that the action of F' preserves < and so the action of F' preserves the
cube structure. O

26. Analyzing links

At the end of Section 25.2, subcomplexes X; of X are defined and it
is pointed out that to arrive at the F, properties of F', we must under-
stand the connectivity properties of descending links. From Theorem
48.3 we also see that to establish that a complex is CAT(0), it suffices
to understand combinatorial properties of links. We start by descibing
the structure of the full links of vertices in X. As mentioned at the end

of Section 25.2, the links will be viewed within the cubical structure of
X.

26.1. The links. Let f be a vertex of X. It is a morphism in
P* from 1 to n. Specifically f is a pair (T,0) where T is a tree and
© is a forest with n roots. The roots are ordered and we think of
them as numbered from 0 through n — 1. Other than the ordering and
numbering of the roots of O, the internal structure of f has little to
do with the following discussion. In fact, it will be less confusing if we
simply refer to the n roots of © as the ends of f and forget about ©.

The vertices of the link of f in X correspond to those vertices g # f
of X for which there is a cube C having both g and f as vertices where
g and f are the vertices of a 1-face of C'. To save words in the discussion
that follows, we will refer to such a g as a neighbor of f . A set A of
neighbors of f is the vertex set of a simplex in the link of f in X if a
single cube verifies that all the elements of A are neighbors of f. We
give the details of the relationships just mentioned.

Assume that f belongs to a cube C' which we may as well assume
is maximal and has the form [fy, foAx] where f; has codomain k < n.
That makes f = fo® for some ® < A, with n — k carets. That is,
is an elementary forest with k roots and n leaves where the n leaves
correspond to the ends of f.

A g in C that is a neighbor of f is of the form g = fy¥ where ® and
U differ from each other by a single caret. Either W is obtained from ®
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by removing one caret of ®, or by adding one caret to ® from Ay that
is missing from ®. Since the leaves of carets in ® are at consecutive
positions in the ends of f, we see that a neighbor of f in C'is identified
by a consecutive pair of ends of f occupied by leaves of ® or by a single
end of f not occupied by a leaf of ®.

Thus the set of neighbors of f in C' correspond to the elements of a
partition of the n ends of f where each element of the partition is either
a consecutive pair of ends of f or a single end of f. We argue in the
other direction that every such partition of the ends of f corresponds
to a cube having f as a vertex.

If S is a partition of the ends of f into singletons and consecutive
pairs, then we build a cube that contains f corresponding to S. Let S
be the set of singletons in S and Sy be the set of pairs in S.

Let h be morphism formed from f by attaching the leaves of a
caret to each pair in Sy. If |S3| = p, then p pairs of ends of f have
been combined so that h has n — p ends and is a morphism in P* with
codomain n — p. Note that 2p < n. Specifically, if ® is the elementary
forest with n — p trees and p carets arranged so that the positions of
the leaves of the carets correspond to the elements of S5, then f = h®
or h = f®~!. The discussion and pictures in Section 24.1 should help
visualize the product.

Let 7 be the morphism formed from f by attaching the root of a
caret to each element of S;. We must have ¢ = |S;| = n — 2p and j
has n+ (n—2p) = 2(n —p) ends and is a morphism whose codomain is
twice that of h. If W is the elementary forest with n trees and ¢ carets
whose roots are located at the positions given by S;, then 7 = fU.
The discussion and pictures in Section 24.1 should help visualize the
product.

The arrangement guarantees that ®U = A,,_, and [h, j] = [h, hA,_)]
is the cube containing f corresponding to the partition S.

Thus a neighbor of f corresponds to an “attaching site” that is
either a pair of consecutive ends of f or a single end of f. A set of
neighbors bounds a simplex in the link of f in X if and only if their
attaching sites are pairwise disjoint. This leads immediately to the
CAT(0) discussion so we will take that up next.

26.2. The CAT(0) property. We continue the notation and dis-
cusion of the previous section.

Theorem 48.3 says that a simply connected cubical complex is
CAT(0) if and only if its vertex links are flag complexes. If A is a
set of neighbors of f and every pair v and v of vertices in A bounds a
1-simplex in the link at f, then the attaching sites for « and v must
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be disjoint. Since the attachiing sites associate to all the elements of
A are pairwise disjoint, the vertices in A are the vertices of a single
simplex in the link. This shows that all links are flag complexes.

From Theorem 48.3 we know that X is CAT(0), and from Proposi-
tion 25.6 (or Theorem 48.4) we know that X is contractible. We have
shown the following.

THEOREM 26.1. Thompson’s group F' acts freely and cellularly on
a contractible, cubical CAT(0) complex.

26.3. Finiteness properties. Recall that the subcomplex X; of
X is defined at the end of Section 25.2 as all morphisms in X with
codomain no bigger than 7. As mentioned X acts on each X; with
compact quotient. We wish to show that the X; satisfy the hypotheses
of Lemma 25.7. Specifically, for each n > 0 we want to show that for
some 7 and all j > ¢ the inclusions X; — X induce isomorphisms on
Tp-

The function p on the morphisms of P that takes a morphism f
to the codomain of f is a Morse function on the set of vertices of the
simplicial complex given by (PF. <) since if p(f) = p(g) = n with
(say) f < g, then f~'g is in P with domain and codomain both equal
to n. This makes f~'g =1, and f = g. So p cannot take on the same
value at the two ends of a 1-simplex.

From Lemma 48.2, we know that the structure of X, is that of
X; with a cone attached at the descending link Lk (f, X) for each
morphism f € P with codomain j 4+ 1. We are thus interested in the
properties of the descending links.

From our discussion in Section 26.1, the full link of an f in X
with codomain j + 1 consists of all partitions of the ends of f into
pairs containing consecutive ends and singletons. The elements of the
partition are attaching sites for carets. Each element of a partition
gives a vertex in the link and a set of vertices in the link belongs to a
simplex if their set of attaching sites are pairwise disjoint.

A pair of consecutive ends of f corresponds to multiplying f by the
inverse of a forest with one caret, and so such an attaching site gives
a neighbor g of f with p(g) = p(f) — 1. A singleton corresponds to
multiplying f by a forest with one caret, and so such an attaching site
gives a neighbor g with p(g) = p(f)+1. Thus a vertex in the descending
link corresponds to a pair of consecutive ends of f and vertices in the
descending link belong to a simplex in the link if their attaching sites
are pairwise disjoint.
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It is clear that the structure of Lk (f, X) depends only on p(f) and
not f itself. If p(f) = n, then the structure of Lk (f, X) has the struc-
ture of the simplicial complex M, whose vertices are the consecutive
pairs (i, + 1) with 0 < ¢ < n—11in {0,1,...,n — 1} and where a
set of vertices bounds a simplex if the corresponding pairs are pairwise
disjoint.

There is a natural inclusion of M,,_; into M,, whose image is all sets
of pairs where the element n — 1 is involved in no pair, and there is
a natural copy of the cone on M, _, in M, with cone point the vertex
corresponding to the pair (n —2,n — 1) in {0,1,...,n — 1} and with
base the image of M,,_s under the composition of the natural inclusions
M, _o — M,y — M,. Thus M,, is the union of M,,_; and the cone on
M, _5, where the intersection of these two subsets is M,,_s.

In particular, if the natural inclusion of M,_s — M, _; is a ho-
motopy equivalence, then M, is contractible. If M, _; is contractible,
then M, has the homotopy type of the suspension of M, 5, and the
connectivity of M, is one more than the connectivity? of M,_, And if
M,,_5 is contractible, then the inclusion of M,,_; into M,, is a homotopy
equivalence. This gives enough to induct on if some facts about M, for
small values of n are gathered.

By inspection M; is empty, M, is a single vertex and thus con-
tractible, M3 is a pair of isolated vertices one of which is the image of
the inclusion of Mj into Ms, and My is the disjoint union of an isolated
vertex and a 1-simplex for which the inclusion M3 — M, is a homo-
topy equivalence. If the reader wishes, a further check shows that the
pattern continues with M5 contractible and the inclusion Mg — M7 is
a homotopy equivalence where both spaces have the homotopy type of
a circle. The complexes M,, are known as matching compleres whose
homotopy properties are well known. The homotopy properties of the
M, exhibit periodic behavior modulo 3, and it is useful to define

v(n) = {”QZJ .

LEMMA 26.2. With M, as defined above, M, is contractible if n = 2
(mod 3), and M,, — M, 1 is a homotopy equivalence if n =0 (mod 3).
For alln > 2, M, is (v(n) — 1)-connected.

PrRoOOF. The specific descriptions of M, given above for n < 5
show that the claims hold for these values. The first unclaimed value

2A suspension is a union of two intersecting contractible sets with the suspended
set as the intersection. Now the van Kampen, Meyer-Vietoris, and Hurewicz iso-
morphism theorems give the claimed connectivity.
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5 is equivalent to 2 modulo 3, so we start the induction with n = 2
(mod 3), and assume the claims for all values less than n. We make use
of the observations about the natural inclusions M,,_o — M,,_1 — M,,
made above.

For n =2 (mod 3), the assumption that M, _o — M, _; is a homo-
topy equivalence shows that M, is contractible.

For n = 0 (mod 3), we know that M, is contractible and the
connectivity of M,, is one more than that of M,,_5,. But for n = 0
(mod 3), ¥(n—2) = v(n)—1 and the connectivity for M, is as claimed.

For n = 1 (mod 3), we know that M, _, is contractible and the
inclusion M,,_; — M, is a homotopy equivalence which verifies that
specific claim, and v(n — 1) = v(n) verifies the connectivity claim. [

COROLLARY 26.2.1. If the codomain of f in X isn, then Lk (f, X)

is (v(n) — 1)-connected.

PROPOSITION 26.3. For each n > 0, there is an @ so that for all
J =1, the inclusions X; — X1 induce isomorphisms on m, for 0 <
q<n.

Proor. Corollary 26.2.1 tells us that, eventually, going from X; to
X1 is done by coning over n-connected subsets. The trio of the van
Kampen, Meyer-Vietoris, and Hurewicz isomorphism theorems says
that X; — X induces an isomorphism on all 7, with ¢ < n. 0

We now have the following.
THEOREM 26.4. Thompson’s group F' has type F...

Proor. This is a gathering of results. From Theorem 22.3 we
must show that for each n > 0 there is an (n — 1)-connected simplicial
complex on which F acts freely and simplicially with compact quotient.
From Lemma 25.8, we have such complexes among the X; if for each n
there is an ¢ for which X; is (n—1)-connected. Combining Propositions
25.6, 26.3 and Lemma 25.7 gives the needed connectivity of the X;. [

Consequences that are beyond the scope of this book are as follows.

THEOREM 26.5. Thompson’s group F has the Haagerup property
and satisfies the Baum-Connes conjecture and the Novikov conjecture.

The claims follow from Theorem 26.1. The connection of Theorem
26.1 to the Haagerup property is due to Niblo and Reeves [163] (The-
orem B), and the connection of the Haagerup property to the Baum-
Connes conjecture (not stated that way) is due to Higson and Kasparov
[108] (Theorem 1.2 and corollary). Julg 1998 [120] is an Asterix elabo-
ration on [108] and its main theorem (Haagerup implies Baum-Connes)
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is stated that way. Theorem 26.1 is a special case of a more general
theorem of Farley in [70], and more details are given in [70] about how
Theorem 26.1 links to the hypotheses used in [163]. The introductory
chapter to [46] puts all of this material in a much larger context. It
is noted in [108] that their results imply that amenable groups satisfy
Baum-Connes and thus the Novikov conjecture. This is an example
where something holds for F' that holds for all amenable groups.

27. A presentation for V

Presentations for V' are harder to come by than for F' and 7', and
there are several approaches in the literature. Very direct is the ap-
proach in Section 6 of Cannon-Floyd-Parry 1996 [43]. An attempt to
make V' look like a Coxeter group (with a corresponding braided Artin
version) is in Brin 2006 [30]. Smaller and more elegant presentations
are given in Quick-Bleak 2017 [22]. Here we give not the smallest pre-
sentation but the presentation with the most elegant packaging. In
spite of its elegant appearance, it is no more elegant than any of the
others when completely unpacked.

The construction is based on the following.

THEOREM 27.1. Let X be a connected and simply connected sim-
plicial complex and let G act simplicially on X. Assume that there is
a connected subcomplex T of X so that for every simplex o of X there
is a unique simplex o’ in T in the orbit of o. Then with G, denoting
the subgroup of G fixing a vertex v, we have that G is the free product
of the elements {G, | v € T} amalgamated over their intersections.

We offer some interpretation, background and cautions about The-
orem 27.1.

For background, the theorem appears as the main theorem in Soulé
1973 [180]. Its proof will not be covered here, and the theorem will be
taken as a black box. A precursor appears in Macbeath 1964 [142]. A
varation appears in Brown 1984 [33]. Further, Theorem 3 of [33] states
that the amalgamations only have to be performed over the intersec-
tions of those pairs of the vertex stabilizers where the two vertices span
an edge in 7.

For interpretation, if we use Theorem 3 of [33], then we have that
G can be presented with generators the disjoint union of generating
sets for the G,, v € T', and with the relations consisting of the union
of the defining relations for the G,, v € T, together with a relation for
each a in a generating set for G, N G,, where u and v span an edge in
T, of the form w,(a) = w!,(a) where w,(a) expresses a in terms of the
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generators of G, and w! (a) expresses a in terms of the generators of
Gy.

By way of caution, we start by mentioning that the subcomplex
T is often referred to as a fundamental domain of the action of G
on 7. The uniqueness in the statement must be taken seriously. It
implies that the vertices of T are representatives of the partition of
the vertices of X into pairwise disjoint orbits under . If X is the
complex often associated with R whose vertices are the integers and
whose 1-simplexes are the intervals [, + 1] for all integers i, then [0, 1]
is not a fundamental domain for the action of Z on X where n acts as
the translation ¢,, in which zt,, = x +n. This is because 0 and 1 are
in the same orbit of the action. Were [0, 1] taken to be a fundamental
domain then one might conclude that Z was the free product of two
trivial groups.

On the other hand, it is easy to show that the reflections r;, ¢ € Z,
where tr; = 21 — t, generate a group G consisting of the r; and the
translations ty; for i € Z. Now [0, 1] is a fundamental domain and G is
isomorphic to the free product Z/2Z x Z/2Z.

We will apply Theorem 27.1 to a simply connected 2-complex on
which V' acts with a 2-simplex as fundamental domain. This will ex-
hibit V' as a free product of three groups amalgamated along their
intersections. The complex will essentially be a subcomplex of the
complex of Section 25 adapted to V. However, we give the adapted
complex a completely different description by using the representation
of V' as the automorphism group of the algebra JT, of Section 18. We
will need to take a subcomplex so that a single 2-simplex becomes a
fundamental domain of the action.

27.1. The complex. Let JT, be the free Jénsson-Tarski algebra
of Section 18. Let B be the set of bases of JT,. For A and B bases of
JT,, we write A < B if B is a binary refinement of A. This is a partial
order on the bases. For A < B, we note that we have |A| < |B|. As
in Section 25.2 we restrict < to < by declaring that A < Bif A < B
and if all the binary splittings that take A to B are only applied to
elements of A and not to any of their “descendants.” In parallel to
Section 25.2, we can refer to B as an elementary refinement of A. The
relation < is reflexive and antisymmetric and not transitive.

For a positive integer 4, we let B>; be those A € B with |A| > 4.
For an A € Bs;, every B € B with A < B has B € B>;. We let Y; be
the simplicial complex associated to (Bs;, <). From Proposition 18.10,
every pair of bases in B>; has a common binary refinement in B>;, and
so Y; is contractible. We let X; be the simplicial complex associated to



178 4. ACTIONS ON COMPLEXES

(B>i, <). The proof of the following can be copied from the proof of
Proposition 25.6 by making the appropriate translations.

PROPOSITION 27.2. The inclusion of X; into Y; is a homotopy
equivalence, and thus X; is contractible.

For our purposes, we only need a simply connected complex. For
positive integers ¢ < j, we let X, ; be the subcomplex of X; spanned
by vertices (bases) A € B with i < [A] < j. We have X; = ;. Xi;,
so if there is a k so that the inclusion induced m1(X; ;) — m1(X; j4+1) is
an injection for all j > k, then (X, ;) must be trivial.

LEMMA 27.3. For all i > 5 and k > i+ 2, we have m (X, ) is
trivial.

PROOF. As in Section 26.3, the discussion in Section 48.8 says that
the complex Xj ;1 is obtained from X;; by attaching cones. That is,
each vertex B in X; ;11 \ X;; has as its link in X ;1; a complex L(B)
in X;;. A vertex Ain L(B) has A < B, and B is obtained from A
by a sequence of binary splittings of A with the splittings restricted to
only be at elements of A. Or, A is obtained from B by applying g to
each pair in a set S(A) of pairs of elements of B where the pairs in
S(A) are pairwise disjoint. By two pairs being disjoint, we mean the
underlying sets of size two are disjoint. Since we must have |A| > i, the
number of pairs in S(A) is no more than j+1—i. A difference between
the current situation and that of Section 26.3 is that in Section 26.3
pairs are consecutive in some total order, where here there is no such
requirement.

Call a set of no more than j + 1 — ¢ pairwise disjoint pairs from B
an allowable set. Thus the vertices of L(B) are allowable sets, and a
simplex in L(B) is a chain of allowable sets. If we show that each such
L(B) is simply connected, then attaching the cones that form X;;
from X;; will cause no change in m (X, ;).

A companion complex to L(B) is K(B) where an n-simplex is an
allowable set of n pairs. Chains of allowable sets are simplices of L(B),
and are also chains of faces and thus barycenters of simplices of K(B).
So L(B) is the barycentric subdivision of K(B). We show that L(B)
is simply connected by showing that K (B) is simply connected.

A closed edge path in the 1-skeleton of K(B) is trivial if it has less
than 3 edges. We will show that every edge path in K(B) with m > 3
edges is homotopic in K(B) to a path with no more than m — 1 edges.
Our hypotheses ¢ > 5 and k > i+ 2 give | B| > 8, and all allowable sets
with up to 3 pairs are in K(B).
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If A - Ay — Ay — Ajs are the vertices, in order, of a path of
length 3 in K(B), then 4 pairs are involved. If the pairs for Ay and A,
are disjoint, then the pairs for all of Ay, Ay, A, are pairwise disjoint, and
the path Ag — A; — A, is homotopic in across a 2-cell to Ag — As.
The pairs for A; and A, use four elements of B, and we can thus assume
that the pair for Ay adds no more than one element to the elements
used. Similarly, we can assume that the pair for A, adds no more than
one element to the elements used, and the number of elements of B
used in the path Ag — A; — Ay — Ajz is no more than six. With at
least 8 elements in B, a vertex A4 exists in K (B) using a pair disjoint
from the elements used in the path. So the cone on the path exists in
K (B) and the path is homotopic in K(B) to the path Ay — Ay — Aj
in K(B). This completes the proof. O

27.2. A presentation. We will use X, to denote the full permu-
tation group on a set of size n.

THEOREM 27.4. The group V' acts on the simply connected 2-complex
X = X57 with fundamental domain a single 2-simplex. The vertices
of the fundamental domain are bases A < B < C' of sizes 5, 6 and 7,
respectively. Their stablizers are, respectively, G, ~ Y5, Gy >~ g, and
G. >~ 7. Their pairwise intersections and the stablizers of the corre-
sponding edges are G,NGy ~ ¥y, G,NG,. >~ 33 X X9, and GyNG, ~ 5.

The statement and its consequences need interpretation which we
give before a proof. The vertex stabilizers and edge stabilizers are most
easily summarized in the triangle below. Justification and details of the
inclusions will follow.

Y7
N
(271) 23 X 22 25

e AN
S5 ¥y 26

With A < B < C, the elements of A can be given as {a,b,c,d,e}.
The basis B is a splitting of A at one of the elements of A, say e, and the
basis C'is a splitting of A at e and one other element of A, say d. Thus
we have B = {a,b,¢,d, eap, e } and C = {a, b, ¢, dag, day, eap, a1 }. A
permutation of C' giving an element of V' that restricts to a permu-
tation of A must preserve {a,b,c} as a set, and either fix pointwise
{dayg, day, eap, eag } or simultaneously transpose dag with eag and doy
with eaq. This explains G, N G, ~ Y3 X ¥5. Simpler discussions cover
the other two intersections. The restrictions given might be made more
clear by looking at the arbitrarily chosen figures below for A, B and C.
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Placement of the splittings was chosen more for graphical convenience
than to fit well with the letters a through e used above.

Using standard presentations for ¥, consisting of n — 1 transposi-
tions as generators, n — 1 relations establishing that the generators are
of order 2, and (n —1)(n — 2) relations giving the interactions of pairs
of generators, the above triangle yields a presentation of V' with 15
generators and 53 relations. We will not write out this presentation.
The inclusions of the edge groups can be done more efficiently since
two generators (a transposition and an n-cycle) can be used for each
Y, with n > 2. These result in 7 of the 53 relations.

The theorem is attractive more for the visual appeal and compact-
ness of (27.1), then for the resulting presentation. No presentation of
V' is particularly pleasant. In Cannon-Floyd-Parry 1996 [43] is a pre-
sentation (Lemma 6.1 and following discussion) with 4 generators and
14 relations. In Quick-Bleak 2017 [22] are presentations with 3 gener-
ators, all transpositions of elements of JT,, and 8 relations (Theorem
1.2), and with 2 generators and 7 relations (Theorem 1.3).

None of this discusses the lengths of the relations. When fully
expanded, the lengths can be huge. The 7 relations in Theorem 1.3
of [22] have lengths, when exponents are expanded, that sum to close
to 200. The presentation in Theorem 1.2 of [22] is not fully expanded
and a full expansion is displayed there as (2.4). The compressed form
in Theorem 1.2 of [22] is about as simple a presentation for V' as has
been found.

PROOF OF THEOREM 27.4. That X is a 2-complex comes from
7 —5 = 2. The simple connectivity comes from Lemma 27.3. That the
fundamental domain is a single 2-cell comes from Proposition 18.9 and
the fact that an automorphism of JT, must take each basis to another
of the same size. Proposition 18.9 also gives the stabilizer of each of A,
B and C. U

The discussion of Theorem 27.4 and the analysis of the complex
is from Brown 1992 [35]. That paper gives further discussions about
groups with triangular presentations such as given in (27.1).

27.3. A general process. The complex (B, <) is a disguised form
of a generalization of the complex (Pj", <) of Section 25. The general-
ization incorporates extra structures that allow for arbitrary bijections
between the leaves of two forest. The approach involving bases of JT,
is used here and in both [35] and Brown 1987 [34] to make the action
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of V' more obvious. The analysis in Section 26.3 that culminates in
Proposition 26.3 forms a special case of general approaches to finite-
ness properties that are given in Sections 1-3 of [34]. See also Part
IT of Geoghegan 2008 [80]. The finiteness properties considered in [34]
are the homological finiteness properties F'P,. Recall that a finitely
presented group is of type F'P, if and only if it is of type F,.

Combining the remarks above with the main results, Theorems 2.2
and 3.2 of [34], one can prove that V' is of type F... This is done for
V and T and an infinite family of generalizations as Theorem 4.17 of
[34].

A standard outline stretches through all of the above. Finiteness
properties of a group G are established by first finding a good (con-
tractible) complex X that G acts on. Then filter X by subcomplexes
and using arguments similar to those in Section 26, prove injectivity of
inclusions sufficiently far out in the filtration. This is usually referred
to as analyzing the descending link. Then quote the main results of
34].

It should be noted that the finiteness criteria in Theorem 2.2 of [34]
are both necessary and sufficient. So these criteria can be used to show
that a certain group is F'P, but not F' P, ;.

28. The Brown-Geoghegan complex

In this section we describe a complex built in Brown-Geoghegan
1984 [36] where it gave the first proof that F'is of type Fi but not of
type F,, for any finite n. This answered question F11 from the section
about finiteness properties in problem list in Wall 1979 [193]. The
question was whether there could be a torsion free group with those
properties. The space we build below and the outline that we follow
are from [36], but with some modification of the arguments.

In Section 10.2 it is shown that F'is an initial object in the category
of groups with a conjugacy idempotent. In Section 19, this fact is used
to show that F' characterizes those homotopy idempotents on connected
CW-complexes that split. In this section, we continue this thread and
build a classifying space X for F', and show that X is an initial object in
the category of connected CW complexes with a homotopy idempotent.
To be specific, a an object in this category is a tuple (Z, 2o, p, , K) with
(Z, zp) a connected CW complex with basepoint zg, self map p, loop «
at 2y, and homotopy K from p to p? that takes z along . A morphism
in this category should preserve and commute with all listed structures.
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Further we will show that X has finitely many cells (two, in fact) in
each positive dimension, and the integral homology of F' is non-trivial
(Z + Z, in fact) in each positive dimension. That is, F' is of type Fi
and its integral homology groups can be calculated.

28.1. A first classifying space. We start with a classifying space
Y for F' that has infinitely many cells in each dimension. We will get
the promised space X as a strong deformation retract of Y by collapsing
certain cells.

The space Y builds itself inevitably and automatically from the
data that (F,o,x0), with z;0 = x;1; the shift endomorphism, is an
initial object in the category of groups with a conjugacy idempotent.
However, the universal cover Y of Y is so easy to describe that the
fastest way to arrive at Y is as the quotient F\Y Proving that Y is
contractible and that Y arises inevitably from the stated properties of
F will then proceed more easily with both Y and Y available.

The complex Y is the cubical complex (F, <) of Lemma 24.9. The
vertices of Y are the elements of F , and each cube in Y is of the form
[f, fh] = f[1,h] with h an elementary element. We will make use of
the analysis of Section 24.4 which codes cubes and their faces in terms
of cubical tuples. _

The group F acts on Y on the left by left multiplication and the
quotient Y under the action consists of the cubes [1, ] with h an el-
ementary element. The cubes in Y are singular. In particular Y has
only one vertex, but the cubes are more singular than that.

We outline our immediate goals. We will show that Y is contractible
by showing that it is CAT(0) (see Section 48.10 in the Appendix) and
quoting Theorem 48.4. We will use Theorem 48.3 to show that Y is
CAT(0) which requires that we first show that Y is simply connected.
We also want to show that Y is an initial object for connected CW com-
plexes with a homotopy idempotent. These goals are interconnected
and we get them by studying Y and Y simultaneously. Our first step
is the following.

LEMMA 28.1. The space Y is cubical complex on which F' acts freely
and cellularly. The projection p from'Y toY = F\Y induced by the
action of F' is a covering projection and F' is isomorphic to the quotient

w1 (V) /pa(mi(Y)).

PROOF. We know that the complex of the poset (F, =) is cubical
by Lemma 24.9, and its underlying simplicial complex is a subcomplex
of the simplicial complex given by (F, <). The action of F is on the left
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and the detection of < and =< is done by understanding multiplication
on the right. Thus both < and < are preserved under the action of F',
and the action preserves simplices and cubes.

A simplex is a finite chain under < and can only be carried to itself
by a bijection. Since the action is order preserving, the bijection must
be the identity. Since the vertices of Y are the elements of F' and the
action is by left multiplication, only the identity of F' fixes a vertex.
Thus the only element of F' that fixes a simplex is the identity and
by the remarks in Section 48.6 of the appendix, the rest of the claims
follow. ]

The discussion that follows makes heavy use of the machinery de-
veloped for cubes and their faces in Section 24.4.

PROPOSITION 28.2. The group m(Y') is isomorphic to F and Y
1s simply connected. Further, the space Y can be given a structure
(Y, *,0,20, H) as object in the category of connected CW complexes
with a homotopy idempotent, and is an initial object in that category.

PRrROOF. The structure of Y is given as F\iN/, but to better under-
stand Y and }7, we will rebuild Y as a CW complex by adding cells
(singular cubes) in the order implied by Lemma 24.12 and parametrized
by the cubical tuples as discussed in Section 24.4. The cubical tuples
correspond to words in normal form of the generators v; of F, but since
we are working in F' with its positive submonoid F'; that is isomorphic
to F, we will refer to the generators z; of F, rather than the v;.

To show that the promised structure (Y, 0, x¢, H) is the claimed
initial object, we start by letting (Z, zg, p, 3, K) be a connected CW
complex with homotopy idempotent p. As we build Y we will build a
function ¢ : Y — Z that commutes with all of the structure.

We start Y with a single vertex * to be the image under the pro-
jection p: Y — F\Y =Y of the vertices of Y. We let ¢(x) = 2.

We will add cells to Y in a sequence of steps in which each step
has two parts. The first part (nH) of step n will add n-cells required
by the existence of the homotopy H. The second part (no) will add
n-cells required by the existence of the idempotet o. The 1-cells will be
labeled with generators of F,. In the narrative below, the sets of tuples
C; and C! are as described in the paragraph before Lemma 24.12. We
will also use the face operators A; and B; of (24.6).

(1H) Add the 1-cell given by the cubical tuple (0). This is the image
of the cube [1, x¢]. It will be oriented from its minimal element 1 to its
maximal element xy, and labeled zy. This is the path required by H
to be the image of H restricted to {x} x [0, 1]. We have added cells for
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all the tuples in C';. We define ¢ on x( to carry its parametrization to
.

(1o) For each i > 1, add the 1-cell given by the tuple (i) = 5%(0)
and label it z; to be o%(x) and copy the orientation of xy. The map
¢ on each z; is defined inductively on i to preserve ¢o = pp. We have
added cells for all the tuples in Cf.

We go through dimension two in detail before making the process
inductive because dimension two will give us m;(Y).

(2H) For each i > 0, add the 2-cell H(i) = 0 A 52(i) = (0,7 + 2)
which carries the homotopy H that connects o(i) = o(z;) = x4 to
02(i) = 0%(x;) = w;,9. Stated differently, (0,4 + 2) connects the lower
face By(0,7+2) = (i + 1) to the upper face Ay(0,7+2) = (i +2). The
remaining faces are B1(0,7 4 2) = (0) and A;(0,7 +2) = (0). Recall
that our cells are singular cubes. The labels on the faces of the 2-cell
(0,7 + 2) are as follows.

Zo

(28.1)

Tit1 Tit2
Zo

The map ¢ on the 2-cell is dictated by the homotopy K from p*(3) to
p1(B). We have added cells for all the tuples in Cs.

(20) For each ¢ > 1 and (0,5 + 2) € Cy add the 2-cell given by
(0,7 +2) = (i,i + j + 2) to be the image of (0,7 + 2) under o*. The
labels on the faces are as follows.

T

(28.2) Litj+1 Litj+2

T

The map ¢ is defined to preserve ¢po = p¢. We have added cells for all
the tuples in CY).

All cells added beyond this will be of dimension 3 or higher and will
not affect the fundamental group of Y. The generators of 7 (Y) are the
x;, © > 0, and the relations given by the 2-cells are all x;z; = z;2;41 for
all 0 < ¢ < j. But these are exactly the relations in the presentation
(9.1) for F. So we have that m(Y) is isomorphic to . From Lemma
28.1, we have that F' is isomorphic to m (YY) /p.(m1(Y)) =~ F/p.(m(Y)).
Since p is a covering projection and by Proposition 5.12 the non-abelian
F' cannot be a proper quotient of F', we have that Y is simply connected.

Adding the rest of the cells to Y continues with the pattern es-
tablished above including the extension of the map ¢ to Z. Since the
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full two part step n adds all cells for the cubical n-tuples, when the
(n+ 1)-cells are added, all their faces are already part of the n-skeleton
of Y. Thus the attaching maps are all established. This completes the
proof. O

PROPOSITION 28.3. The space Y isa contractible, cubical CAT(0)
complex on which F acts freely and cellularly, and Y is a classifying
space for F.

PROOF. Lemma 28.1 says that the action is free and cellular, and
Proposition 28.2 says that Y is simply connected and 7, (F\Y) = m1(Y)
is isomorphic to F. By Theorem 48.4 in the appendix, we will have
that Y is contractible if it is CAT(0), and since Y is simply connected,
we will have by Theorem 48.3 that Y is CAT(0) if the link of every

vertex in Y is flag. A link of a vertex is flag if every finite set S of
vertices in the link spans a simplex whenever every pair in S spans a
simplex. In this discussion, we return to the topic of carets in a forest
and the argument will finish by noting that a forest is elementary if
every pair of carets is disjoint.

Let v be a vertex in (F, <) and let S be a finite set of vertices in the
link of v. That is w € S when {v,w} forms a 1-cube which happens
when either v < w or w = v so that the difference is a single caret. We
let L be the set of w € S with w < v and U be the set of w € S with
v =< w. We first look at pairs in L, then pairs in U and lastly pairs
with one element in each of L and U.

If wy # we in L bound a 1-simplex in the link, then {w;,wq, v} are
vertices of a 2-cube. The vertex v can only be the maximum element
of the 2-cube which must have the form [l,v = [h] where h is an ele-
mentary forest of two carets. Thus every pair in L has a lower bound
and by Corollary 24.5.1, L has a greatest lower bound b in (F, <). We
claim b < v.

We bring in w; and wy as above. We know v = bf for some forest
fand that b <[ {2 w; X vand b <[ < wy; X v are chains and that
[[,v = [h] is a 2-cube. Thus [ = bg for some g € F,, so bgh = lh =
v=>bf and f = gh. Thus f has two exposed carets k1 and ko obtained
from h whose removal gives g. The removal of x; from f leaves f; with
bfi = w; and the removal of ko from f leaves fy with bfy = wy. If
this is done for an arbitrary pair w; # w; in L, we obtain a pair of
exposed carets x; and x; in f where the removal of x; leaves f; with
bf; = w; and removal of k; leaves f; with bf; = w;. The k; are pairwise
disjoint exposed carets in f and the removal of all of them leaves f’
with b < bf’ and bf’" a lower bound for all of L. Thus b = bf’, f’is
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trivial and f is elementary. Thus [b,v = bf] is a cube containing L,
and the vertices in L bound a simplex in the link.

To discuss U, we note that F'is regarded as a groupoid on the single
object w which we can think of as the set of roots of a trivial forest to
which carets may be attached to build other forests. Now for u; # us
in U, we have u; = v)\;, i € {1,2}, where each )\; is a forest of one
caret. Since u; # ug, we have that A\; # Ao and we can form the forest
fi2 = A U Xg. The forest fi o is elementary since it consists of carets
attached to different leaves of v, and we have a 2-cube [v,vf 2] that
contains all of v, u; and wus. Thus the union of all the \; for which
vA; = u; € U is an elementary forest A and [v, vA] is a cube containing
all the elements of U. In the discussion of U, we did not need to use
the assumption that every pair in U lies in a 2-cube.

Now we consider w € L and u € U. We know that w is a vertex
in [b,bf = v], and u is a vertex in [v,vA]. So we are looking at the
interaction of f and A. We have w < v < u where each difference
is a single caret. Our assumption says that [w,u] is a 2-cell. Thus
u = wg with ¢ an elementary forest of two carets and thus the union
g1 U g2 with each g; a forest of one caret. For one of the g; (g1, say)
we have v = wg;. Going back to v = bf, we have that ¢g; is one of the
carets in f. Since g = gy U g2 is elementary, the caret attached to v
to obtain u cannot be attached at a leaf of the exposed caret attached
by g1 in v = wg;. Since w and u were arbitrary we have shown that
in vA = bfA, the carets attached by f and the carets attached by A
are pairwise disjoint. Thus fA is elementary and [b,vA] = [b.bfA] is a
cube containing all of S =LUU.

Now Y is CAT(0) and thus contractible, and Y is a classifying space
for F. U

Theorems 28.6 and 28.8 below give that there is a classifying CW
complex X for F' so that for each n > 1, X has two n-cells, and
H,(Z;Z) = Z + Z. Both arguments rely on a more detailed under-
standing on how the cells of Y fit together, and we give those details
first.

The space X will be a strong deformation retract of Y obtained by
a sequence of collapses of various n-cells. To obtain the sequence we
need to know which cells collapse, how they collapse and in what order.
To understand the homology, we need to understand boundaries. To
do all this, we classify cubes by the nature of their entries in their
corresponding tuples, and our language will not distinguish between
the cube and its corresponding tuple.
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Consider an n-cube i = (ig,...,4,_1). For each n there are two es-
sential cubes of dimension n given by (0,3, ...,3n—3) and (1,4, ...,3n—
2). If i is not essential, then there is a largest j for which i; —4;_1 # 3
or ig > 2. The cube i is collapsible if there is a largest j for which
i; —1j—1 # 3, and for that particular j we have i; —¢;_; = 2. All cubes
that are not essential and not collapsible are redundant. The set of n-
cubes is thus the disjoint union of the essential n-cubes, the collapsible
n-cubes, and the redundant n-cubes. Note that a cube with i > 2 and
all ¢; —1;_; = 3 is redundant.

In the following, we use the face operators (24.6). If i is an n-tuple
that is collapsible with j largest so that ¢; — ;1 # 3 (and thus equal
to 2), we call the face A;_;(i) the free face of i and the face B;_;(i) the
base face of i. The free face of a collapsible n-tuple is redundamt.

If i is a redundant n-tuple, and there is a largest j with 7;—i;_1 # 3,
then for that j we must have i; —¢;_; > 4 and we let

C](i) - (io,. .. ,ij_l,ij - Q,ij,. .. ain—l)

which is a collapsible (n + 1)-cube whose free face A;(C;(i)) is i. Note
that in this case j > 1, and that the value 7; is now found in position
(7 + 1) of C5(3).

If i is a redundant n-tuple with no j for which ¢;4q —4; # 3, then
ip > 2 and we let

C()(l) — (ZO - 2, io, e ,Z'nfl)

which is a collapsible (n + 1)-cube whose free face Ag(Cy(i)) is i. We
have the following.

LEMMA 28.4. Taking each collapsible (n + 1)-cube to its free face
gives a bijection from the set of collapsible (n + 1)-cubes to the set of
redundant n-cubes.

We order cubical tuples with the short-lex order. Specifically, n-
tuples are ordered lexicographically with the leftmost entry the most
significant and all (n — 1)-tuples come before all n-tuples.

LEMMA 28.5. Ifi is a redundant n-cube and C;(i) is the collapsible
(n + 1)-cube whose free face is i, then for all k € {0,...,n}, we have
the following possibilities.
(1) For k = j, we have Ay(C;(i)) = A;(C;(i)) =i is redundant.
The face Bi(C;(i)) = B;(C;(i)) can be of any type and has
t

By(C;(i)) < Ak(C;(1)) in he lezicographic order on n-tuples.
(2) For k < j, both Ak(C](l ) and By(C;(i)) are collapsible.
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(3) For k > j, we have Bi(C;(i)) < Ap(C;(1)) < i in the lexico-
graphic order on n-tuples, and Ax(C;(i)) and B (C;(i)) are ei-
ther equal or are the free and base faces of a collapsible (n+1)-
cube.

PrOOF. When k = j, the claim about A;(C;(i)) = A;(C;(i)) =i
is by construction, the claim about the order is from the definition of
the A; and B;, and examples that verify the claim about the type of
By (Cj(i)) can be constructed by the reader.

If £ < j, then the gap of 2 in C}(i) between i, — 2 and 7; survives as
the last gap not equal to 3 in both A, (C;(i)) and B(C;(i)) and they
are both collapsible.

If £ > j, then the first place from the left where A;(C;(i)) and i
disagree is in the j-th place at which the entry for A;(C;(i)) is the
lower of the two. The comparison between A (C;(i)) and By (C(i))
comes from the definitions of the face operators.

If j < k < n, then both A;(C;(i)) and By(C;(i)) are redundant
since the gap in A,(C;(i)) formed by removing the k-th entry from
C;(i) is 5 or 6. That a collapsible (n+ 1)-cube can be formed for which
Ai(C;(1)) and By (Cj(i)) are the free and base faces is easily seen.

If 5 < k =n, then A,(C;(i)) = Br(C;(i)). Specifically, the projec-
tion from Y to Y identifies these two faces (among other singularities).
The type of this common face is not predictable when j+1 =k =n. U

THEOREM 28.6. There is a subcomplex X of Y consisting of two

singular cubes in each dimension so that X is a strong deformation
retract of Y. It follows that F' is of type F.

PROOF. The complex X is the union of the unique 0-cell and all of
the essential n-cells. It is easier to show how to expand X to Y, and
we will do so in steps. Step 0 is to start with X. We point out that
all the O-cells are present in X as are all the essential n-cells, and all
the collapsible 1-cells because there are no collapsible 1-cells. We will
show inductively that after step n, all of the n-skeleton of Y and all
the collapsible (n + 1)-cells will be present. Thus after step n, the cells
missing from the (n 4 1)-skeleton of Y are all redundant.

The short-lex order is a well order. At some point in the expansion
process we will have a complex Z with X C Z C Y and a redundant
n-cell i that is least in the short-lex order among those cells that are
not in Z. By an inductive assumption and Lemma 28.5, all faces of
C;(i) except i are either collapsible n-cells, or come before i in the
short-lex order. Thus all faces of C}(i) except i are in Z. A collapsible
(n + 1)-cell can be collapsed to the union of its non-free faces. The
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reverse of this collapse expands Z to Z’ which includes C;(i) and its
free face i. O

Lemma 28.5 addresses faces of collapsible cubes. To compute the
homology of X, we need to add information about the faces of essential
cubes. We leave the verification of the following to the reader.

LEMMA 28.7. Ifi is an essential n-cube withn > 1, then A, (i) =
B,,_1(i) is essential. For j <n—1, A;(i) and B;(i) are both redundant,
and C;j(A;(i)) is the collapsible n-cube whose free face is A;(i), and
whose base face is B;(i).

THEOREM 28.8. The classifying space X for F has H,(X;Z) =
Z + 7 for eachn > 1.

PrRoOOF. For n > 1, the n-chains of X form the free abelian group
on the two essential n-cells. The result follows if we show that the
boundary map is zero. While it would suffice to show this for the
essential n-cells, the argument will need to show more. We will use
cellular homology (see Chapter 2 of [80]), but will treat cells as cubes
to compute boundaries.

As chains, every n-cell is a sum of essential n-cells. We note that
the boundary of an n-cube i is the sum over j € {0,...,n — 1} of
(—1)7(A;(i) — B;(i)). Compare to 8.3.1 of [109]. We will be done if
we show that for every essential n-cube i, we have A;(i) = B;(i) as
(n — 1)-chains for all 0 < j < n.

For an essential n-cube i, Lemma 28.7 tells us that it suffices to
show that for j < n — 1, the free and base faces of the collapsible n-
cube C;(A;(i)) are equal as (n — 1)-chains. We claim that the free and
base faces of all collapsible n-cubes are equal as (n —1)-chains. We will
argue this inductively.

There are no collapsible 1-cubes, so we start with n = 2. All 2-
cubes are pictured in (28.1) and (28.2) and the claim is clear. We now
consider a collapsible n-cube i and assume the truth of the claim for
all collapsible cubes whose free face precedes the free face of i in the
short-lex order.

The structure of a collapsible n-cube i shows that its free and base
faces are equal as (n — 1)-chains modulo the “side faces” (those faces
of i other than the free and base faces). If A;(i) and B;(i) are a pair of
opposite side faces of i, then by Items (2) and (3) of Lemma 28.5, they
are either collapsible, equal, or a face-base pair of some other collapsible
n-cube. In the last two cases, both faces precede the free face of i in the
lexicographic order on the (n — 1)-cubes. By the inductive assumption,
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all the side faces of i are either collapsible or cancel in pairs, and the
proof is complete. L

We can now finish Theorem 19.1 by proving its third item.

THEOREM 28.9. Fvery homotopy idempotent (pointed or not) on a
finite dimensional, connected CW complex splits.

Proor. We work with Y which is homotopy equivalent to X.

Assume (Z, zg, p, a, K) is a conncected, CW complex with a homo-
topy idempotent p that does not split. From Proposition 28.2, we have
a morphism ¢ from (Y,*,0,x9, H) to (Z, 29, p,, K), and from Item
(1) of Theorem 19.1, we know that ¢, : F' = m, (Y, *) = m1(Z, 29) is an
injection. Let G ~ F' be the image of ¢, and let Z be the cover of Z
corresponding to GG. Consider the following diagram.

v-Y.7 .y

RN

A

The map p is the covering projection. The lift ¢’ exists because the
image of ¢, is contained in G (Proposition 1.33 of [104]), and induces
an isomorphism on fundamental groups. The map ¢ takes zy to o and
x1 to p(a), and so if yy and y; are the lifts, respectively, of a and p(«)
to Z, then ¢ takes z; to y;, i € {0,1}. Because Y is a classifying space
for F, there is a map j : Z — Y taking y; to x;, i € {0,1}, so that j,
is an isomorphism. It follows that { = j¢' is a homotopy equivalence
and (g is an isomorphism on all homology groups. From Theorem
28.8, H,(Y) is non-trivial for all n, so ¢ cannot factor through a finite
dimensional space, and Z and Z are infinite dimensional. U

The following is Theorem 7.2 of [36] whose proof is based on the
HNN structure of F' (Section 10.3) and its F'Py property. The proof
while short is outside the scope of the book, and we just give the
statement. This establishes one of the three properties of F' mentioned
in Section 15.4 that had been conjectured by Geoghegan.

THEOREM 28.10. H"(F,ZF) =0 for all n.
29. End notes

More history around finiteness properties can be gleaned from the
following: Eilenberg-Ganea 1957 [67], Wall 1965 [192] and 1979 [193],
Serre 1971 [178] and 1979 [177], Baumslag-Dyer-Heller 1980 [7], Brown
1982 [32].
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There are many ways to build a complex for the Thompson groups
to act on. The approach in Section 23 reflects the author’s fondness
for the positive monoid of F.

At this point no variants of the Thompson groups have been brought
up. There are some in Chapter 6 and there will be more. References
for the complexes that they act on (if known) and what conclusions
can be reached will be given. Most of the time, F,, can be proven.

Theorem 26.1 is a special case of the main theorem of Farley 2003
[70]. The cubical structures associated to Thompson’s groups had been
noted before, but [70] was the first to generalize and exploit them.
Actions on CAT(0) spaces are proven in [70] for a large class of groups.

See Brown [34], Stein [183], and Farley [70] for the original analysis
of the complexes that we have associated to those names.

The category P of finite forests is also considered in detail in Ap-
pendix A of Luo-Wan 2024 [140].

Greenberg 1992 [91] builds a classifying space for F' whose cells are
the associahedra of Stasheff 1963 [182].
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30. Introduction

'First order logic uses a restricted language which gives the first
step for dealing with infinite structures. The scope of all quantifiers
must be the same (possibly infinite) set. We will show that in spite of
these restrictions first order techniques have considerable power in the
setting of Thompson’s groups. Some results are from purely first order
techniques, and some are arguments with first order techniques mixed
in.

The chapter is meant to illustrate, and we give details for a sampling
of results. The end matter of the chapter will discuss other results that
we do not cover in detail.

The main results covered are that the elementary theory of the
group F' (those first order sentences that hold for F') is undecidable

IThis chapter is reasonably complete. Minor changes may be made in the
future.

193
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(in fact hereditarily undecidable), and that the theory determines the
isomorphism type of F' among all finitely generated groups and also
largely determines the action of F' on the unit interval.

Section 31 will be a brief and not entirely self contained review of
the terms just used and of first order logic and model theory. What
we give should be enough for the reader who is not too skeptical, and
for the others we will give references for more complete background.
The sections after Section 31 will contain the results mentioned in the
previous paragraph.

31. Background

Two related objects coexist in this topic: structures and sets of
first order statements that are made about structures. A structure
o/ = (A,X) consists of a set A and a set ¥ of relations, operations
and constants on A. Sometimes A is allowed to be empty, but we will
forbid that here. Usually X is allowed to be uncountable, but we will
not deal with such cases. Each relation and each operation in ¥ has a
non-zero arity where a relation in 3 of arity n is a subset of A", and an
operation of arity n is a function from A™ to A. Constants are elements
of A.

At times it will be useful to view operations and constants as rela-
tions, with an operation of arity n viewed as a relation of arity n + 1,
and a constant as a relation of arity 1. But there are reasons for keeping
them separate at other times.

Statements about a structure such as &/ = (A, ) are built from
a set of symbols. Some are symbols representing the elements of X,
some symbols are variables, and the rest are the logical connectives A
and —, the logical quantifier V, the equal sign = with its usual meaning
and taken as an extra relation of arity 2, and grammatical symbols
(technically not needed) such as the parentheses and comma. Symbols
such as V, =, <, and 3 can be defined in terms of A, = and V.

It is important that the symbols representing the elements of 3 be
kept separate from > and thus there is a set L of such symbols and
a bijection (which in our brevity we will not give a notation to) from
L to X. Each symbol in L mapped to a relation or operation will
have a non-zero arity that must equal the arity of the corresponding
relation or operation. We use the letter L since this set is often called
a language. This displeases us and we will use the word “signature”
for the set L instead. We prefer to think of the language as the set of
possible statements about a structure that are built from L with the
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other symbols mentioned above. In the sitation with a bijection from
L to ¥ as just described, the structure &7 is called an L-structure.

Keeping the symbols for 3 separate from X allows a single signature
L to have many L-structures, hopefully somewhat related. The only
requirement on two L structures about the nature of the relations (or
operations) corresponding to the same symbol in L is that they be of
the same arity.

Statements are built in the usual way from the symbols in L, from
an agreed upon countable set of variable symbols, from the logical sym-
bols A, =, V, and grammatical symbols. Operations recursively applied
to variable symbols and constant symbols create terms, and relation
symbols applied recursively to terms while combined with logical sym-
bols create statements. It is important to note that all statements
are finite. The scope of every quantifier applied to an L-structure
o/ = (A, Y) will always be the set A.

There are ways of avoiding grammatical symbols. However no one
actually works that way, and grammatical symbols will be used here.
The usual classification of variables used in a statement into free and
bound variables is made. Details can be found in the first few pages
of any text on logic or model theory. Possible sources are Marker 2002
[148] and Hodges 1993 [112].

Statements formed as described are called formulas, or L-formulas
to emphasize that they are based on the symbols in a signature L.
Formulas without free variables (all variables used are bound) are called
sentences. Sentences play very different roles than formulas with free
variables. Much of the discussion of theory involves sentences, but
much of the actual work done involves formulas with free variables.

31.1. Substitution, truth, and definability. It is necessary to
distinguish between what is true and what can be shown to be true.
Here we discuss what is true. The discussion requires a signature L
and an L-structure & = (A, ).

Given an L-formula ¢ using n free variables v = (vy,...,v,), we can
ask which elements a = (aq, ..., a,) from A™ make ¢ true when each a;
is substituted for v;. The subset Sy of A™ consisting of those n-tuples
that make ¢ true is said to be (first order) defined by ¢. Sets defined
by formulas dominate this chapter, and we sketch one way (elementary
set theory) to arrive at the set defined by a formula.

If an L-formula ¢ consists of a single n-ary relation symbol all of
whose terms are variables, then Sy is the subset of A" associated to
the corresponding relation in ¥. The set defined by ¢ A € would be
the intersection Sy and Sy except that ¢ and 6 might not use identical
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sets of free variables. In that case, it will be necessary to first take the
Cartesian product of each of S; and Sy with appropriate powers of A.
The set defined by Vx,¢ where x is free in ¢ (we refuse to deal with
the case where x is not free in ¢) is an intersection of projections of
cross sections of S,. When operations or constants are involved, then
the binary relation = between well chosen variable symbols is brought
in to equate the values of operations or constants (each regarded as a
relation here) with other parts of the formula. Thus in the L-structure
o/ = (A, X) the sets defined by L-formulas having free variables are
the sets associated with the elements in ¥ (and =) combined under
cartesian products with A, intersection, and intersections of projections
of cross sections.

If @ = (A,X) is an L-structure, and ¢ is an L-formula of arity n,
we say that S, is (first order) definable. Note that it is possible to
quantify over S, by the ruse of using Vx € Sy, 6 as an abbreviation for
Vx, (¢(x) = ). Thus one can effectively quantify over definable sets.

The sketch just given is not the usual way to arrive at a set defined
by a formula, and [148] and [112] can be consulted for the usual method.
There, a recursive definition is given for when an n-tuple a € A™ makes
an n-ary L-formula ¢ true when substituted for the free variables in
¢. When this happens we say o7 satisfies, or models, or is a model for
¢(a) and write &/ = ¢(a). When ¢ is a sentence (no free variables),
we write o/ = ¢.

The elementary set theory approach to defined sets fails when it
comes to sentences. This is because there is no set defined by a sen-
tence. It is either “true” for a structure or not. However, we can come
close and say that if the last symbol applied in building a sentence is
V, as in Vz, ¢ where z is the only free variable in ¢, then &/ = Vx, ¢ if
and only if the set defined by ¢ is exactly A. With this agreement, the
usual interpretations of = as “not” and A as “and” give what is needed
to deal with sentences whose last symbol applied is not V.

31.2. Theories. The elementary theory of an L-structure 7, or
Th(e/), is the set of L-sentences ¢ for which &7 is a model. The
elementary set theory approach makes the following clear.

(1) For every L-sentence ¢ at least one of ¢ or —¢ is in Th(.«).
(2) For every L-sentence ¢, no more than one of ¢ and —¢ is in
Th(«).
An L-theory T is a set of L-sentences. An L-theory is complete if
it satisfies (1) above. An L-theory is consistent if it satisfies (2) above.

An L-theory T has a model &7 if o/ is an L-structure so that for every
peT, o = ¢. Equivalently, T C Th(</).
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Every theory that has a model is consistent. One result that follows
of Godel’s completeness theorem for first order logic 1930 [87] is the
converse and a theory is thus consistent if and only if it has a model. We
will discuss another result that follows from the completeness theorem.

If S is a set of L-sentences and ¢ is another L-sentence, then we
can say that ¢ is derivable from S if there is a formal proof of ¢ from S
(i.e., a proof of S = ¢) using a fixed set of (hopefully reasonable and
standard) rules of inference. We will discuss neither formal proofs nor
rules of inference. On the other hand we say that ¢ is a consequence
of S if every model for S also is a model for ¢. The second result that
follows from the completeness theorem is that ¢ is derivable from S if
and only if ¢ is a consequence of S. We will use the word consequence
rather than derivable, and ¢ is a consequence of S will be denoted
S E ¢.

We will be concerned mostly with theories of specific structures,
such as the elementary theory of the Thompson group F. A theory of
a class of structures comes up as we make our next point.

If T is an L-theory, we will let T denote its set of consequences.
We have T" C T°. If T is consistent, then T is consistent since T has
a model which must then be a model for 7.

But if 7" is not complete, T might not be complete as well. There
may be a pair of sentences ¢ and —¢ not in T because there is a model
for T that satisfies ¢ and a different model for 7" that does not satisfy
¢. As an example, we can use the elementary theory of the class of
groups. We let the language L consist of one binary operation that we
will suggestively write by adjacency, and we let the L-theory G consist
of the three sentences:

(i) Vo, Yy, ¥z, 2(y2) = (29)2,
(i) V,Vy,3z,x = yz,

(iii) Ve, Vy, Jw,z = wy.

It is a straightforward exercise that a structure is a model for G if
and only if it has a unique, global two-sided identity and each element
has a unique, two-sided inverse. Thus sentences expressing these facts
are consequences of G, and a structure is a model for G if and only
if it is a group. However both abelian groups and non-abelian groups
satisfy G, and so neither the sentence Vz,Vy, xy = yx nor its negation
is a consequence of G.

31.3. Undecidable theories. Let T' be an L-theory. We say that
T is decidable if there is a finitely describable algorithm that, given
an L-sentence ¢, decides whether or not ¢ is in 7°. Note that for
a decidable, incomplete theory T, the algorithm might decide that
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neither ¢ nor —¢ are in 7. The algorithm need not “explain itself” by
proving by some technique that its decisions are correct.

We are not going to discuss the details of what goes into an algo-
rthm since that will not concern us here. However, it will be important
that over a countable signature, there are only countably many possi-
ble alogorithms. This is the reason that we restrict our attencion to
countable signaures. This restriction is implicit in the discussion of
undecidable theories on Page 8 of Tarski 1953 [187], and explicit in
Definition 10.2(i) in Monk 1976 [155] of those languages considered in
the chapters of [155] on decidable and undecidable theories. Note that
the vocabulary in [187] and [155] is of a certain time and differs from
ours in places.

That there are undecidable theories was first established by using
techniques from one of the equivalent forms of recursive function theory.
Recursive function theory saw intense development after its use in the
incompleteness theorem of Godel 1931 [88], and was used in early re-
sults on undecidable theories. Shortly after, other theories were proven
undecidable by the alternate technique of reducing the argument to
a theory already known to be undecidable. This was first referred to
as “defining” one theory in another, and eventually evolved to a more
general notion of “interpreting” one theory in another. Interpretations
will be discussed in Section 31.4. During this evolution, the book [187]
on undecidable theories summarized and added to the alternate tech-
nique, but the concept and the vocabulary continued to evolve over
time.

There are two modifiers relevant to the term “undecidable.” Given
two L-theories T7 C Ty, we say that T5 is an extension of T}, and that
T7 is a subtheory of T5. Let T be a consistent L-theory. We say that
T is essentially undecidable if T and every consistent extension of T is
undecidable. We say that T is hereditarily undecidable if T and every
subtheory of T' is undecidable.

The theory G of groups from Section 31.2 is an example of a hered-
itarily undecidable theory. That the theory G is undecidable is shown
in (Chapter III of [187]). That G is hereditarily undecidable follows
from the basic facts about derivability including the deduction theo-
rem (SU{¢} = 0 if and only if S |= (¢ = 6)). We can regard (i)—(iii)
of Section 31.2 as axioms for G and note that ¢ =(i)A(ii)A(iii) is a
single sentence from which all sentences in G¢ are consequences. That
is 0 € G° if and only (¢ = 0) € G°. If T} is a subtheory of G, then so is
Ty =Ty U{¢}, and Ts = G°. Now 0 € Ty if and only if (¢ = 6) € TT.
If Ty is decidable, then the truth of (¢ = 0) € Tf is decidable. By
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our chain of equivalences and equalities, this makes 8 € G¢ decidable,
a contradiction.

More generally, we have the following given as Lemma 2.13 in
Altinel-Muranov 2009 [5]

LEMMA 31.1. If a theory T has finite signature and has a finitely
axiomatizable subtheory that is essentially undecidable, then T is hered-
itarily undecidable.

For an example of a theory that fits the hypotheses of Lemma 31.1,
we have the following from Chapter II, Theorem 9 of [187].

THEOREM 31.2. The theory N of the semiring (N,+, X) has a
finitely axiomizable subtheory that is essentially undecidable.

That the cardinality of an axiom set is important lets us explain
why operations and constants should not always be thought of as rela-
tions. If an n-ary operation f on a structure &/ = (A, ) is viewed as
an (n + 1)-ary relation R where the last coordinate a,, is functionally
determined from the first n coordinates a = (ay, ..., a,_1), then

Va,3dx, R(a,x), and
Va,Vx,Vy, (R(a,z) AN R(a,y)) =z =y

are sentences in Th(.2). Unless these sentences follow from something
else, they must be regarded as axioms of Th(</). Having infinitely
many operations in Y that are regarded as relations can change whether
or not Th(47) is seen as having finitely many axioms. A similar dis-
cussion holds for constants.

That the theory G of groups is hereditarily undecidable has a conse-
quence worth noting. As given in Section 31.2, G is an L-theory where
the language L has as its only element a binary operation. Thus the
L-theory consisting of consequences of the empty set of sentences is
undecidable. That is, the theory of the class of structures whose signa-
ture is a single binary operation is undecidable. This is noted as 1(c)
in the table on P. 279 in [155] of some undecidable theories.

We can also use the theory G to show that neither modifier “hered-
itarily” nor “esentially” is automatic for undecidable theories. The
L-theory AG of abelian groups is decidable (Janiczak 1950 [116]), and
it is obtainable from the theory G by adding to the sentences (i)—(iii)
of Section 31.2, the sentence

(iv) YV, Yy, xy = yx.
This makes AG a decidable, consistent extension of the undecidable
theory G, and so G is not essentially undecidable.
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We can guarantee the existence of an L-theory that is an undecid-
able extension of AG which will then be an undecidable, but not hered-
itarily undecidable theory. We will build an uncountable collection of
extensions AG(P) of AG where the AG(P) are pairwise unequal. Since
there can only be countably many algorithms, only countably many of
the AG(P) can be decidable. We let P be an infinite collection of
primes in N, and we build AG(P) by adding, for each p € P, the
following sentence to the sentences (i)—(iv) of AG:

(vp) Va, Pt £ z.

Since the identity is not mentioned in L, the sentence (v,) is a cheap
way to say that no x has order p. These theories are all consistent
because the additive group Z is a model for each AG(P). Because of
the existence of the cyclic groups of prime order, it is clear that the
AG(P)¢ are all different. Uncountably many must be undecidable and
not hereditarily undecidable.

31.4. Interpretations and bi-interpretations. One way to prove
that a structure &/ has an undecidable theory is to interpret within .o/
another structure 4 that has an undecidable theory. The technique
involves definable sets as discussed in Section 31.1.

DEFINITION 31.3. Let & = (A,%;) be an L;-structure and % =
(B, %) be an Lo-structure. Here, we regard operations and constants
in ¥, as relations and thus each R € ¥, is a subset of some B?. An
interpretation of % in &7 is a surjection f from a definable subset S
of A¥ to B so that for each R € ¥y (as well as =) identified with its
associated subset of some B’, the inverse image f~'(R) is a definable
subset of AF7,

If it looks like f goes in the wrong direction, this can be corrected
by replacing f by its inverse, a set valued function going from B to the
definable subset S of the definition.

To give an illustration of Definition 31.3, we consider the usual
interpretation of (Q,+, x) in (Z,+, x). Here Q = {(a,b) € Z* |
b+ b # b} is a definable subset of Z% and we set f : Q — Q as
f(a,b) = ¢ Now E = {(a1,b1,a2,b2) € Z* | a1by = apbi} defines
the inverse image of “=" P = {(ay, by, as,bs,a3,b3) € Z°® | azbiby =
bs(a1bs 4 asby)} defines the inverse image of + regarded as a relation,
and M = {(ay,b1,a9,bs,a3,b3) € Z8 | azbiby = ajasbs} defines the
inverse image of x regarded as a relation.

Interpretations sometimes have limitations that can be overcome
by the use of parameters (temporary constants). We discuss the use of
parameters.
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If ¢ is an L-formula and &/ = (A,%) an L-structure, and if v =
(v1,...,v;) and w = (wy, ..., wy) partition the free variables of ¢ into
tuples that share no entries, then with a = (ay,...,a;) € A*, sub-
stituting each a;, 1 < ¢ < k, for w; in ¢ creates a formula ¢(v,a) of
arity j which defines a subset of A7 with parameters a. If sets defined
with parameters are used in an interpretation, then the interpreta-
tion is with parameters. The following can be found as Lemma 6.2 of
Altinel-Muranov 2009 [5] where a proof is given.

LEMMA 31.4. Let M and N be two structures of finite signatures
such that Th(M) is hereditairily undecidable, and N interprets M with
parameters. Then Th(N) is hereditarily undecidable as well.

The inclusion of parameters in a discussion can have drastic effects.
We showed in Section 12.7.1 that F' satisfies no laws. Consider the
two parameters a = z; and b = z3(zor1)”" with their usual action on
[0,1]. The support of a is [%, 1] and the support of b is [0, %] For any
f € F, the point %f is either in [0, 3] or in [%, 1]. So either [a,b/] =1
or [af,b] = 1, and for all f € F, we have [[a,b’],[a’,b]] = 1. So F
satisfies a law with parameters.

Structures that are interpretable within each other are said to be
bi-interpretable under a special condition. First it is noted that a
composition of interpretations makes sense in the usual situations and

is an interpretation.

DEFINITION 31.5. If there is an interpretation of a structure 4 in a
structure &/ and vice versa, then they form a pair of bi-interpretations
if the two compositions, regarded as subsets of Cartesian powers of
the respective universes, are definable sets. If any definitions involve
parameters, then the bi-interpretations are with parameters.

Interpretations induce homomorphisms of automorphism groups.
If & = (A,Y) is an L-structure, then Aut(4?) is the group of permu-
tations of A that preserve (or commute with) the elements of ¥. In
terms of sets, if o is a permutation of A, then o acts on A™ diagonally,
(a1,...,ap)0 = (ay0,...,a,0) and to be in Aut(</), we must have
Ro = R for every R € ¥ where every R in X is regarded as a subset of
a Cartesian power of A. That is each R € ¥ is preserved as a set by o.

It follows that every definable set in .o/ is preserved as a set by
Aut(«7). If a set S is definable using parameters, then S is only pre-
served as a set by those elements of Aut(</) that fix the parameters
pointwise.

The claims below follow from careful inspection of the definitions.
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LEMMA 31.6. (I) The composition of interpretations is an interpre-
tation.

(IT) An interpretation of a structure B in a structure 7 induces a
well defined homomorphism from Aut(</) to Aut(%A).

(III) In (II), if the interpretation uses parameters, then Aut(<)
must be replaced by the subgroup that fizes the set of parameters point-
wise.

(IV) Bi-interpretations induce isomorphisms of automorphism groups
and if parameters are involved, the automorphism groups must be re-
placed by the subgroups that fix the parameters pointwise.

Bi-interpretations involving F' and their consequences are discussed
in Section 35.

32. Undecidability of Th(F)

We will give two proofs that the elementary theory of F' is hered-
itarily undecidable. This section contains the first proof and uses an
interpretation with parameters. The second proof uses an interpreta-
tion without parameters and is contained in Section 34. Before that,
Section 33 uses first order arguments to recover the action of £ on [0, 1]
from the algebra of F'. Some of the tools developed there will be used
in Section 34. For the purpose of showing undecidability, there is no
need for a proof using an interpretation without parameters. However,
it is an interesting display of techniques.

The fact that the elementary theory of F' is hereditarily undecid-
able is interesting, but this does not make F' particularly unique. A
general fact is that any virtually solvable infinite group that is not
virtually abelian interprets arithmetic and thus has a hereditarily un-
decidable elementary theory. See the comments and references in the
first paragraphs of Section 5 of [5].

The proof in this section is short, and is based on the next lemma
which follows from the general fact just mentioned. However a self
contained proof is given in Lemma 5.1 of [5].

LEMMA 32.1. The group ZZ interprets (N, +, X) with parameters.
PrRoOPOSITION 32.2. The Thompson group F' interprets 2.1 Z with

parameters.

1

PROOF. Let a = 7 and let b = 222, 2!, As a tree pair, we have

= (&%)
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making (%, %) the support of b. Since %a = %, Lemma 4.7 gives that
!

(a,b) equals (b)? (a) and is isomorphic to Z ! Z. We next show that
(a,b) is a definable subset in F'.

We use C(f) and C(A) to denote, respectively, the centralizers of
f € Fand A C F. From Proposition 5.17 we have C'(a) = (a) which
gives that ¢(f,a) := (af = fa) defines (a) using the parameter a. The
set B = {b"" | n € Z} is defined by 0(f,a,b) := (Ig € C(a), f = V9).
The supports of the elements of B cover (0,1) except for a countable
discrete set of points in (0,1). From Proposition 5.17 again, we have
C(B) = (B) which is then defined by o(f,a,b) :== (Vg € B, fg =
gf). Now (a,b) = C(B)C(a) which is defined by p(f,a,b) := (3g €
C(B),3h € C(a), f = gh).

The group operations on (a, b) are just the restrictions of the group
operations of F' to (a,b) and are definable. O

THEOREM 32.3. The elementary theory of Thompson’s group F' is
hereditarily undecidable.

PRrOOF. The claim now follows from Lemma 31.6(I), Theorem 31.2,
and Lemmas 31.1, 31.4, and 32.1, and Proposition 32.2 O

33. Recovering the action

It is sometimes the case that the action of a group G on a space X is
sufficiently flexible so that two conditions are met. First the centralizer
of G in the full group of homeomorphisms of X is trivial, and second
the space X and the action of G can be reconstructed solely from the
algebraic structure of G. When this happens, every automorphism of
G is realized as conjugation by a unique homeomorphism of X. That
is, the automorphism group of G is isomorphic to the normalizer of GG
in the homeomorphism group of X.

Further, if for i € {1,2} we have a group G; acting on a space X;
that has the properties just referred to, then every isomorphism from
(G1 to Gy is induced by a unique homeomorphism from X; to X5. In
particular, isomorphism of the groups implies topological conjugacy of
the actions.

These results have tremendous power in the study of automor-
phisms, isomorphisms and homomorphic embeddings of the groups to
which they apply, and these results apply to a very large number of
groups in the Thompson family.

In Section 33.1 below we discuss one of the most general theorems
of this type, and certainly one of the most quoted theorems that apply
to Thompson’s groups. We only give a reference for the details of the
proof, but in Section 33.2, we give the details of a more specialized
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result that applies to groups acting on the line, and in particular to
Thompson’s group F'. We do so to illustrate the techniques and because
many of the mechanics will be used later in Section 34.

33.1. The Rubin theorem. The following theorem is a reword-
ing of one of the main results in Rubin 1989 [171]. The result has been
modified by Rubin many times to take into account extra structure on
the spaces involved. Rubin’s original proof left space for such modifi-
cations and a more streamlined proof is in Belk-Elliott-Matucci 2024

8].

THEOREM 33.1. If for i € {1,2} the group G; acts faithfully on
a locally compact, Hausdorff spaces X; with no isolated points, and
for each open U C X; and each p € U, the closure of the oribit of
p under {g € G | supp(g) C U} contains an open set, then for each
isomorphism 0 : Gy — Go there is a unique homeomorphism h : X; —
Xy so that for all (g,x) € Gy x X1 we have h(xg) = (h(z))8(g).

We will not go into the details of the proof. The core of the argu-
ment is that if a group G and space X satisfy the hypotheses satisfied
by each pair (G;, X;) in Theorem 33.1, then the elementary theory of
the group G is strong enough to define the poset of the interiors of
the closures of the supports of elements of G. The space X is then
recovered from the set of ultrafilters on the poset.

An action that satisfies the hypotheses of Theorem 33.1 is called a
Rubin action in [8]. Many groups in the Thompson family are given
as Rubin actions, and Theorem 33.1 is applied to answer questions
about their automorphisms and monomorphisms. For automorphisms,
we have the following corollary.

COROLLARY 33.1.1. If G has a Rubin action on X, then the auto-
morphism group of G is a quotient of the normalizer of G in Homeo(X).
If the centrlizer of G in Homeo(X) is trivial, then the quotient homo-
morphism is an isomorphism.

33.2. The Bieri-Strebel argument. What follows is a minor
reworking of an argument from Bieri-Strebel 2016 [15]. We regard F
as the structure (F, x, 7!, 1). When < is a total order on a set, we use
<’ to denote the relation where a <’ b if and only if b < a.

THEOREM 33.2. In the structure F, there are definable without pa-
rameters a set E/, an equivalence relation R on E, and relations < and
<" on E so that if © = Z[1] N (0, 1), then these interpret (D,=, <, <)
with possibly a needed switch of < with <" on E. Further there is an
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action of F' on the set E of equivalence classes in E so that the inter-
pretation map from E to ® induces a conjugacy from the action of F
on E to the action of F' on ®.

The proof will follow a key lemma and a sequential development of
definable sets.

Conjugating elements of F' by the order reversing homeomorphism
t — 1 —t on [0,1] induces an automorphism of F' which interchanges
the relations < and <’ in the above statement. Thus there is no way
that the elementary theory of F' can express a preference for one of
< and <’ over the other, and the specifics of the interpretation map
require information outside of the elementary theory of F'.

Technically, we could do the interpretation with paramenters and
make every element of F' a parameter. Then the action of F on F
would be first order definable taking the form of an infinite set of unary
operations indexed over F'. It is not clear that this is of any interest.

The main ingredient in proving Theorem 33.2 is a first order formula
in the algebra of F' that is equivalent to a geometric statement about
the group action. The binary operation x in the structure (F, x, 71, 1)
will be written as adjacency. The following formula is the basis for all
that follows.

(33.1)  a(f.g.d)==(f £ A(g# D) A(d#£L)AVE, [f,g"]=1.

To discuss the geometric equivalent, we introduce some terminology.
We say that an order preserving permutation d on a linearly ordered
set is directional if d is not the identity, and so that if there is a ¢ with
td > t, then for all ¢ we have td > t. Note that d directional implies
that if there is a t with td < t, then for all t we have td < t. If d is
directional and there is a ¢ with td > ¢, then we say that the d has
positive direction and has negative direction otherwise.

If X and Y are non-empty subsets of I, then we say that ¢t € (0, 1)
separates X from Y if X lies in one component of I\ {t} and Y lies
in the other. In such case we write X < Y if some (eqivalently all)
(p,q) € X x Y satisfy p < ¢, and write X > Y otherwise.

LEMMA 33.3. Given f,g,d in F we have o(f, g,d) holds if and only
if none is the identity, d is directional, and there is a t € (0,1) that
separates X the support of f from Y the support of g. If a(f,g,d)
holds, then X <Y if and only if d has positive direction.

Proor. We consider the “if” direction first. Under its assump-
tions, every conjugate d* of d is directional with the same direction as
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d, so every d* moves each point of supp(g) no closer to the support of
f. Thus f and the conjugate of ¢ by d* will commute.

For the other direction we prove the inverse. This breaks into two
cases. For the first there are s and ¢ in (0,1) with sd < s and td > t.
For the second there are p < ¢ < rin (0, 1) with p and r in the support
of (say) f, and ¢ in the support of g. In both cases, there is a p in the
support of f, a ¢ in the support of g, and a ¢ in the suppport of d so
that ¢ — p and td — ¢ have opposite signs. It suffices to consider ¢ > p
and td < t. The case p > ¢ has an argument that is identical except
for necessary changes of inequalities.

The equality [f, gdk] = 1 holds if either or both of f and g are
replaced by their inverses. So we can assume that pf > p and qg > q.
In particular we have

pfP<pfP<pfl<p<q<qg<qg’

The following calculations verify and totally obscure the fact that a
conjugate d* of d can distribute the orbit (g, qg, gg*) among the inter-

vals (pf =3, pf2), (pf 2 pf~Y) and (pf~,p) so that f and g% cannot
possibly commute. The idea is to place ¢ and qg in the first interval
and gg? in the third. We can assume that ¢ is a dyadic, so we have
that its images under various elements of F' are dyadics as well.

There is an open interval J about ¢ so that Jd is disjoint from J,
and there are open intervals Jy and J; in J so that we have

Jod < Jid < Jy < Jy.

Choose dyadics a; < ay < az with a; and ay in (pf=3,pf~2) and
as € (pf_l,p), and by < by < by with by and by in Jy and b3 € J;. Note
that

a1 < as <as<q<qg<qg®, and
bid < bad < bgd <b <by < bg.

By the transitivity properties of F' from Section 5, there is a k € F
so that
bldk = ay, bzdk = Qg, bgdk = as,

bik = q, bok = qg, bsk = qg*.
We have
(gk~'dk) = ay, (qk’ldk)gdk = (qgk~'dk) = ay, so
pf < (qgk~'dk) < (qk‘ldk’)gdk <pf? and
pf7 < (g7 dk)g" f < pf
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But
(gk~'dk)g" < pf~* < (¢k~'dk)f, so

(qk~'dk)(g*)" < (qk™'dk)fg™,

and
(g~ dk)(¢*)" = q¢*k~'dk = as € (pf~",p), giving
(qk~dk)g™ f < pf~" < (gk~'dk)(g®)" < (¢k~"dk) fg™".

So g% f and f¢* disagree on (gk~'dk) and we have [f, g%'] # 1. O

We can now define formulas based on a(f,g,d) and give their geo-
metric equivalents. Justifications of the verbal claims in what follows
are left as exercises to the reader. We will also abbreviate mercilessly.

(33.2) B(d) == 3f,3g,a(f, g,d) :

d is directional.

(333) 7(d17d2) = Elfa Elg,@(f,g, dl) /\Oé(f,g,dz) :

dy and d, are directional in the same direction.

Let K be the set defined by 5. Now ~ defines an equivalence relation
5 on K with exactly two equivalence classes. We will use d to denote
the equivalence class of d € K under = and will use —d to denote the
opposite class.

We now have d; = d, implies a(f, g,d,) < a(f,g,dy) and d; = —d;
implies a(f,g,d1) < a(g, f,d2). To abbreviate further, we will write
f <agfor a(f.g,d).

(33.4) 5(f,9,h,d) = a(f,g,d) Nalg, h,d) :
de Kand f <59 <;h.

(33.5) e(f,g,d) :==a(f,g,d) NYh,=0(f, h,g,d) :

d € K, f <7 g, and the closures of the supports of f and g have a
single point in common that we will denote é(f, g, d).
In parallel to an observation above, we have that d; = dy implies
e(f,g,d1) < €(f,g,ds) and d; = —dy implies €(f, g,d1) < €(g, f, ds)
The formula €(f, g, d) identifies points that the group acts on. The
point common to the closures of the supports of f and g must neces-
sarily be dyadic. We let E be the set defined by e. We need to identify
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when two elements of E should be seen as the same, and when one
element is less than another.

g(flagladh f2a92a d2) ::E(flagladl) A €(f27927d2)/\
(33.6) (((cfz =di) A (fi <, 92))V

((dy = —di) A (f1 <g, f2))) :

di € K, dy € K, (f1,91,d1) € E, (f2,992,d2) € E, and whether or not
di = d», the common point of the closure of the supports of f; and ¢
is no greater, in the direction of d;, than the corresponding point for
J2 and ga.

In this situation we write €(fi,g1,d1) <g, €(f2,g2,d2). For each
d € K, this gives a partial order on FE, all elements of K in the same
class under = give the same order and elements in different classes
under —+ give opposite orders.

n<f1,917d17f27927d2) 3:(é(f1>917d1) <a é(f2792>d2))/\
(€(f2; 92, d2) <4, €(f1, 91,dn)) :

the points é(f1,91,d;) and é(f2, go, d2) are the same point.

The formula n defines an equivalence relation on E and we let E
be the set of equivalence classes. The order <j on F induces a total
order on E. If each element in F is identified with the dyadic rational in
(0, 1) that is the common point of closure of support of a representative
pair of functions, then the order <j is identical to the usual order on
Z[%] N (0,1) if d has positive direction, and the orders are the opposite
otherwise.

(33.7)

PrROOF OF THEOREM 33.2. We use the formulas given above. The
set £ is defined by the formula €, and hopefully the reader has verified
that n defines an equivalence relation on E with set F of eqivalence
classes, that each equivalence class corresponds to a single point in
D =Z[3]N(0,1), and that the two equivalence classes of = on K give
inverse total orders < and <’ on E. Lastly, sending each class in E to
its corresponding point in D is a bijection from E to © that carries the
pair {<, <’} on E to the pair {<,<'} on ©.

The action of F on E will be by conjugation in that for h € F, if
e(f,g,d) holds then so does €(f", g", d) and we will let the image of the
triple (f, g,d) under the action of h be (f",g", d). In ©, we have that
(€(f,g,d))h = ¢(f", g", d) which verifies the claimed conjugacy. O
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Theorem 33.2 can be extended to give an isomorphism implies topo-
logical conjugacy result similar to that of Theorem 33.1. The following
is Theorem E16.3 of Bieri-Strebel 2016 [15] and first appeared as The-
orem E3 in Bieri-Strebel 1985 [13]. Item (4) in the statement uses a
term given in Definition 5.1.

For the proof see [15]. However, the reader can also derive the proof
by checking that the proofs of Lemma 33.3 and Theorem 33.2 use only
the properties of F' given as (1-4) below, and supplying the necessary
arguments to go from the conclusion of Theorem 33.2 to the conclusion
below.

THEOREM 33.4. Let G act as a group of order preserving permuta-
tions on a dense, countable, linearly ordered set A having no extremal
elements. Assume the following properties.

(1) Some d € G is directional.

(2) There is a non-identity g € G whose support is bounded both
above and below.

(3) There is a triple (f, g,d) satisfying €(f, g,d).

(4) The action of G on A is o-6-transitive.

Then if ® is an isomorphism from F to G, there is a unique bijection
©: Z[3]N(0,1) — A that conjugates the action of F on Z[5] N (0,1)
to that of G on A in that for each f € F and t € Z[1]N(0,1), we have
O(tf) = (O(t)(P(f)). Further © is either order preserving or order
TeVersing.

34. A parameter free interpretation of arithmetic

We give the result of Altinel-Muranov 2009 [5] that Thompson’s
group F' interprets (N, +, x) without parameters. As mentioned be-
fore, an interpretation without parameters is not necessary to show
that the elementary theorey of F' is undecidable, but the techniques
are interesting. Our argument for the following varies from that in [5]
in that we use material from Section 33.2.

THEOREM 34.1. The elementary theory of Thompson’s group F in-
terprets (N, +, x) without parameters.

PrOOF. What will be shown directly is that F interprets (N, +, |)
where | is the relation “divides.” However, the constant 1 in N is easily
definable in (N, +, |), and from R. M. Robinson 1951 [170] we have the
formula

p1(n, k) :=Vm, (njm < (klm A (k+ 1)|m))
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which holds if and only if n = k(k + 1). This is then used with
pa(n, k)= (k+0)(k+1+1)=k(k+1)+1(l+1)+n+n

which holds if and only if n = kl.
To interpret (N, +,]) in F, we will need a definable set in F' with
a map to N. The set will be

(34.1) Bey={feFr|0f, =1fL =1},

and the map from B>y to N will be f +— log,(0f%). This will require
a sequence of definitions which, as might be expected, will be focused
on what happens near 0 and 1.

We will use the formula a (33.7)) in the structure (F, x, ' 1) as
given in Section 33.2, as well as the defined set K based on /5 (33.2)
consisting of directional elements of F. We also make use of the fact
that we can effectively quantify over defined sets, and that for definable
sets in the universe of a structure, the relations of equality, containment
and proper containment of sets are first order expressible.

We cannot differentiate the end of [0, 1] near 0 and the end near 1,
but given d € K, we can constently refer to the two ends of [0,1] as
being “to the left” or “to the right” with respect to d. This gives us
the ability to inspect properties an element of F' at the two ends. For
d € K, we can define

Foy={f139,a(g, f,d)}, and
F(de) ={f13g,a(f g, d)}.

Assuming that d has positive direction, a characterization of the ele-
ments in F(dLl) and Fgﬂ) is

Fay={f | f#1A0f; =1}, and
Fiy ={f | f#1A1f =1},

where f% and f’ are the right and left derivatives, respectively.
However F, (dL1) N F(dm) is independent of which d € K is used. So
we are justified in writing

Foy = FoyNEFGgy ={f | f#1A0fL =1f =1}.

This symmetry will apply in several instances below and in such
cases we will not define F] (de) for various symbols z, and let the reader
fill in the details for that and F{,). As above, we will give descriptions
of F, (de) assuming that d has positive direction.

Note that F' = [F, F'] = F(3y U {1}, but given that every element of
F’ is a product of two or fewer commutators (Proposition 5.13), we also
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have F' = {f | Jw, 3z, Jy, 3z, f = [w, z][y, z]}. Since {1} is definable,
F" is definable in two ways.

The next definitions are of subgroups near the endpoints of (0, 1)
and not of behavior at the endpoints. Given d € K, f € F(dLl) and

g € F, (%ﬂ), we define
Fiipp = {h ] a(h, f,d)}, and
F[CglR]) ={h|a(g,h,d)},

Assuming that d has positive direction, if s is the infemum of the
support of f and ¢ is the supremum of the support of g, then F[C} 1) is
the subgroup of F', isomorphic to F', of those elements whose support is
0, s] and F[‘;L] is similar with support [¢,1]. Not only are these groups
defined by s and ¢, these groups also define s and t. This is used next
where we show that we can define

Floy=A{f10fy <1}, and Fly={f11f <1}.

Note that 0f) < 1 if and only if f carries every sufficiently small
interval (0,s) properly into itself, and for 1f’ < 1, every sufficiently
small interval (¢, 1) is carried properly into itself. This discussion was
for the case where d has positive direction. We set

F(dL<1) ={fl3g€ F(dm)th < F(dL1)7 (a(h, g,d) = f_lF[CilLL]f & F[%L})}a

with parallel definition of F(dR<1), and we set F(.j) = F(dL<1) N F(dR<1).
We set Fioy = {f | ' € Fi)} and Fjopy = {f | [ €

: d d d d d d e
The six sets F(Ll)’ F(L>1), F(L<1), F(R1)> F(R>1), F(R<1) give inde-

pendent control over what is happening at the two ends of [0, 1].
Since we can pick out slopes above 1 from other slopes, we can
restrict what we can increase slopes by. So we can define

Fiioy ={f | 0f}, =2},

with the use of F(szn = F(dLl) U F(dL>1) by setting

F(dLQ) ={f¢€ F(dL>1) | Vg € F(dL>1)a Jh € F(szl)agOth)il € F(dLl)}v

with parallel definition for F(dRQ), and we set Fo) = F(dLQ) N F(‘ﬁm). In
words, 0f) = 2 if and only if multiplying 0f} by powers of 2 with
non-negative exponents yields all powers of 2 with positive exponents.

Recall from Definition 5.15 that a dyadic orbital of f € F' is a
component of the support of f to which all non-dyadic isolated fixed
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points have been added. We can pick out those elements of F' that
have exactly one dyadic orbital by

Fl— {f | ﬂ<3deK,Hg,3h, [a(g,h,d)/\fzgh])}.

Now F(lz) = F' N Fly) is the set of f € F with one dyadic orbital
and with 0f}, = 1f" = 2. Because of the slopes at 0 and 1, such an f
must have at least one fixed point in (0, 1) which must necessarily not
be dyadic.

From Proposition 5.17 we have Cp(f) = (f) for every f € F(12).

We set Fi>1y = F(>1) U Fl1), and now the set B>q from (34.1) is
definable by the formula

¢(f) :==3g € Fo),3h € Cr(g) N Fio1y, fhH € F.

Note that dg can be replaced by Vg with the same result.

As mentioned before, the map from B>, to N is f = log,(0f}).
The preimage of = on N is the restriction of f ~ g & fg~! € F’ to
Bs,. The preimage of addition is the restriction of multiplication in F’
to le‘

To address divisibility, we first get rid of the annoying cases involv-
ing 0. We have for a and b in N,

alb < [a#0A(b=0V Ik #0,b=ak).

So we will work with Bs; = B>y \ F’ and model 3k # 0,b = ak.

We have to deal with the fact that Cr(f) = (f) fails even for a
function whose only dyadic orbital is all of (0,1) if f has proper roots.
However by Lemma 34.2 below, for every f € B~ there is h € F' with
hf~! € F’ so that h has only one dyadic orbital that is all of (0,1) and
which has no proper roots.

Now we note for f and g in B that 0g/, = (0f%.)* for some k € Z
if and only if

VYhe F',3j € Cp(hf),gj € F'.

Thus the premimage of | is definable which completes the proof. O

LEMMA 34.2. For positive integers m and n, there is f € F with
one dyadic orbital so that Of' = 2™ and 1f = 2", and so that [ has
no proper root.

PRrROOF. Any f with 0f) = 2™ has its leftmost break at a point
po = (wo,y0) with zy < % and yg = 202™ < 1. Now for kK > 0, a
straightforward calculation gives that the leftmost break of f* is at
(20/2mF™ 20/2™F). But 0/2™F = yo/2mF™ < 1/2™*=1 which even

for k = 2 is less than 1/2. But by the transitivity properties of F', for
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any m > 0 there is an f € F with 0f, = 2™ and whose leftmost break
has y-coordinate in the interval (1/2,1).

To get only one dyadic orbital, f can be built to have exactly one
isolated fixed point, and that point be non-dyadic. The leftmost break
can have y-coordinates in (1/2,2/3), and the isolated fixed point can
be at 2/3 where the slope of f is 1/4 on a brief interval. O

35. Bi-interpretations and their consequences

In Lasserre 2014 [128] it is shown that F' is bi-interpretable with
(Z,+, x). We briefly discuss this here and touch on some of the impli-
cations.

Whether F' is bi-interpretable with (Z, 4, x ) was raised as Question
2 in [5]. In the paragraph before that question, it is pointed out that
recursive function theory and the solvability of the word problem in F
together guarantee an interpretation of F' in (Z,+, X). No other struc-
tural details about F' are needed. See [5] for the relevant references.
Because of the extra requirements on a bi-interpretation in Definition
31.5, the existence of interpretations of F' in (Z, +, x) and the reverse
is not enough to give a bi-interpretation.

The argument in [128] uses the guaranteed interpretation of F' in
(Z,+, x) together with a very carefully constructed interpretation of
(Z,+, x) in F to give the bi-interpretation. Because the interpretation
of (Z,+, x) in F in [128] requires a much longer argument than not
only the proof of Proposition 32.2 and but also of Theorem 34.1, and
because the reverse interpretation uses little from the structure of F,
we only make a few comments about the proof and refer the reader to
[128] for details.

The proofs of Proposition 32.2 and Theorem 34.1 make use of the
properties of centralizers in F' that follow from Proposition 5.17. These
properties are also used in [128] as well as the finer control that double
centralizers give which follow from Corollary 5.17.1. The arguments
in [128] factor through Z ! Z as they do in the arguments of Altinel-
Muranov 2009 [5]. The bi-interpretation in [128] is with parameters.
That it is not possible to have a bi-interpretation without parameters
follows from Lemma 31.6(IV).

Also shown in [128] is that Thompson’s group 7T is bi-interpretable
with (Z, 4+, x). As one step, it is shown that F' is definable in T', a fact
stated, but not shown in [5].

35.1. Consequences. We give some consequences of Lasserre’s
results.
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If o = (A, X) is a structure, then we refer to the cardinality of A as
the cardinality of .&7. For a cardinality k, a theory T is k-categorical if
there is only one isomorphism class of models for T of cardinality x. An
L-structure o7 is k-categorical if has cardinality x and its elementary
theory is k-categorical. That is, any L-structure of cardinality x with
the same elementary theory as .7 is isomorphic to .<7.

We will focus on the countably infinite cardinal Ny. The following
is found as part of Theorem 7.3.1 in [112].

THEOREM 35.1. A complete theory T over a countable signature is
Ro-categorical if and only if for some (and thus every) countable model
o = (A, X) for T the action of Aut(</) on A is oligomorphic.

DEFINITION 35.2. An action of a group G on a set X is oligomorphic
if for each n > 1, the coordinatewise action of G on X" has finitely
many orbits.

The action of Aut(G) on a group G that has an infinite, finitely
generated subgroup cannot be oligomorphic. Forif (gq,...,g,) generate
an infinite subgroup S < G, then {(g1,...,9n,8) | s € S} represent
infinitely many orbits in G™™!. In particular any group with a non-
torsion element does not have an Ny-categorical theory.

Thus we know that there is a countable group not isomorphic to F
that has the same elementary theory as F. What such a group looks
like is not clear. However from the discussion that follows, such an
example cannot be finitely generated.

Weaker than Ny-categorical on a finitely generated, countably infi-
nite group G is quasi-finitely axiomatizable (QFA). A group G is QFA
if there is a set .S of finitely many sentences (equivalently, one sentence)
in the elementary theory of GG so that any finitely generated group that
satisfies .S is isomorphic to G.

Stronger than two groups having the same elementary theory, is for
there to be an elementary embedding from one to the other. A function
f G — H is an elementary embedding of for every formula in the
signature of groups, a tuple in G satisfies the formula if and only if the
image of the tuple satisfies the formula in H. Note that applying this
to formulas with no free variables shows that an elementary embedding
induces an isomorphism on the elementary theories. Also, preserving
the formula = # y shows that an elementary embedding is truly an
embedding. A group G is prime if it has an elementary embedding
into every group that is a model for Th(G).

The relevance of the terms just defined is the following.
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THEOREM 35.3. A finitely generated group that is bi-interpretable
with (Z,+, X) is both QFA and prime.

This is announced in Khelif 2007 [123] as Lemma 1. Proofs of
QFA are given in Proposition 2.28 of Aschenbrenner-Khélif-Naziazeno-
Scanlon 2020 [6] and Theorem 10 of Kharlampovich-Myasnikov-Sohrabi
2022 [122]. Proof of prime is in Corollary 6 of [122].

From Lassere’s result, we have the following.

THEOREM 35.4. The Thompson groups F and T are QFA and
prime.

The group T was the first simple group known to have these prop-
erties.

For each G € {F,T} if we set .#(G) to be the set of countable
models of Th(G), then there are groups in .#(G) not isomorphic to
G, but for every H € .#(G), there is an elementary embeddeing of G
into H.

The paper [122] introduces the concept rich, an invariant property
of bi-interpretability. A group that is rich has a first order theory that
has the strength of a theory (called weak second order theory) that is
strictly between first order theory and second order theory. We refer
the reader to [122] for details. The ring Z is rich, and so F' and T are
both rich.

Some relations are known between the properties just discussed.
Neither QFA nor prime is equivalent to being bi-interpretable with
(Z,+, x). In Nies 2003 [164], Theorem 5.1 says that the Heisenberg
group UT3(Z) (the group of 3x 3 upper triangular matrices over Z with
ones on the diagonal) is QFA, and Corollary 5.3 (of a “well known”
criterion) says that UT3(Z) is prime. In Nies 2007 [165], Theorem
7.16 shows that UT(Z) (called UT3(Z) in the later paper) is not bi-
interpretable with (Z, +, x). Corollary 3.2 of [165] is that prime does
not imply QFA, and it is commented that as of that paper whether
QFA implies prime is an open question. Private communication from
Myasnikov says that UT3(Z) is not rich and that the proof is not ob-
vious.

36. End notes

An early example of interpretation rather than definition of one
structure in another is in Mal’cev 1960 [146]. The paper can also be
found as Chapter 15 of Wells 1971 [145].

A very different class of groups is shown in Giraudet-Glass-Truss
[83] to have undecidable theories by interpreting the integers.
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Reconstruction theorems (deducing an action and the space acted
upon from the algebra of the group) have a history with specialized
results applied to spaces with specialized structures. Some history is
found in Rubin 1989 [171] at the end of the introductory section, and
in Section 1.8 of Rubin-Yomdin 2005 [172]. Hasson-Bennet 2018 [101]
is a Rubin memoriam and gives some history of Rubin’s part of the
subject. A paper by Mann and Wolff 2019 [147] has reconstruction
theorems that cover techniques of Rubin and other techniques. The
recent paper of Koberda-de la Nuez Gonzélez 2025 [124] is in a very
recent paper in the area. Reconstruction in PL,(I) is done from a
different approach in Hyde-Moore 2023 [115].

The power of the first order language of certain groups such as
the Thompson groups shows up in several ways. The rich groups of
Kharlampovich-Myasnikov-Sohrabi 2022 [122] (which has an informa-
tive introduction) are a class of groups where the first order theory
has power strictly between that of first order theory and second order
theory. Investigations for groups of homeomorphisms of manifolds are
in Koberda-de la Nuez Gonzalez 20234 [126, 127].

The expressiveness of first order formulas is exploited in Brin 2005
[29], Taylor 2017 [188], and Bleak-Brin-Moore 2021 [21], although the
results there cannot be called first order results.
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37. Introduction

'Lack of familiarity with Chapter 2 will make this chapter difficult
to read.

We can modify the definitions of F', T" and V' to produce variants
that share properties with the original F', T" and V' and are thus mem-
bers of the Thompson family. We can combine groups that are already
in the Thompson family with other groups to produce marriages that
also share properties with the members of the Thompson family. We
only consider countable groups. Among desired properties are strong
control over normal subgroups (simplicity would be nice) and some level
of finiteness. Finitely presented is preferred over finitely generated.

We will give a sampling of variants and marriages. We will omit
many details, in part because some details are similar to those in Chap-
ter 2, and in part because as the family grows, so does the amount of
material to be covered.

Thompson groups can be derived from actions on spaces, from com-
binatorial structures, and from dynamical systems. These derivations

IThis chapter is not complete. More material will be added in the future.

217
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can all be varied, inviting a search for unification. Some of these have
been mentioned in then end notes (Section 14) of Chapter 2.

38. The Higman and Brown variants

In Section 11.6, pairs of finite forests are introduced. It is shown
that pairs of binary forests, either finite or finitary, all ultimately lead
to a group isomorphic to . We will see that the results are different
when the same exercise is done for groups like 7" or V.

In this section we look at two changes to the definitions in Chapter
2. We change both the number of trees, and the arity of the trees. We
fix integers n > 2 and r > 1, and we look at pairs of finite n-ary forests
with each forest having r trees (r roots) and with a bijection between
the leaves of the two forests. If the bijection is order preserving, then
we get an “F-like” group denoted F),,. If the bijection preserves the
cyclic order, we get a “I-like” group denoted 7,,,, and for arbitrary
bijections, the result is a “V-like” group denoted V,,,. For the F-
like groups, we can also let » = oo to get F), . There will be some
dependence of the isomorphism types on the parameters, and a certain
amount of independence. We will discuss what properties are shared
with the groups F', T" and V.

Note that Chapter 2 starts with homeomorphisms and works to-
wards trees and forests. Here we start with trees and forest and work
back towards homeomorphisms.

38.1. The main parameters.

DEFINITION 38.1. Let n > 2 and r > 1 be integers, and also allow
r = o00. A forest pair of type (n,r) is a triple (®, 0, ¥) where ® and
U are n-ary forests (sequences of n-ary trees) of length r and o is a
bijection from the leaves of ® to the leaves of W. The leaves of each
forest are ordered with the prefix order as in Definition 11.3. If o is
omitted or r = 0o, then the bijection is assumed to be the unique order
preserving bijection.

At this point n-ary splittings on the forests, and matched n-ary
splittings on the pairs can be defined as in Sections 6 through 8, to-
gether with matched n-ary refinements and the equivalence classes that
they generate. Putting opportunistic multiplication on the classes re-
sults in the groups F,,,, T, , and V,, ,, as mentioned above, depending
on the nature of the bijections o.

We limit the dependence of F,, ., T},, and V,,, on r for finite r. In
Proposition 38.3 below, we will completely will eliminate the depen-
dence of F},, on r for 1 <r < oco. For finite r, we explode trees.
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If T is a finite n-ary tree over the alphabet {0,...,n—1}, then E(T)
is the sequence of length n consisting of the subtrees (70,711, ...,T,-1)
with the subtrees denoted as in Definition 8.3. If & = (®g,..., P, 4)
is a finite forest of m-ary trees of length r, then we explode the last
tree of ® to get E(®) = (Pg,..., P, o, E(P,_1)) of length r + (n —
1). And if (®,0,¥) is a forest pair of type (n,r) then E(®, 0, V) =
(E(®),0', E(V)) is a forest pair of type (n,r+ (n— 1)) where o’ agress
with o on the leaves of the trees in ® except for the last tree and is
defined on the leaves of E(®,_;) to commute with the natural inclusions
of the trees in E(®,_1) and E(V,_;) into ®,_; and W,_, respectively.

LEMMA 38.2. The function E from forests pairs of type (n,r) to
forest pairs of type (n,r + (n — 1)) commutes with matched binary
splittings and induces isomorphisms Gy, — Gprqm—1) for G any one
of F, T, orV.

The full story of the dependence of the groups 7, , and V,, , groups
on the parameters is more complicated and only partly known for the
T,.». This will be discussed later. We first discuss the groups F, .

38.2. Combinatorics and the £, ,.

38.2.1. Isomorphism types. For 1 < r < oo, we show that the iso-
morphism types of the groups F,,, depend only on n and not r. We
get presentations for the groups and review consequences of the pre-
sentation. The ability to move back and forth between F,,, and F, ,
for various r and s will prove very useful.

We can successively apply the operation E to a finite forest. Since
each application changes only the last tree, there is a stable notion
of applying E infinitely many times. Since our trees are finite (have
only finitely many vertices), then for any finite forest ®, the result is a
finitary forest £°°(®) (all but finitely many trees are trivial) of n-ary
trees. Now for a forest pair (®, V) (the omitted bijection is assumed
order preserving) of type (n,r) with r < oo, the pair E*(®, V) =
(E®(®), E*(¥)) is a finitary forest pair of n-ary trees. With the usual
definitions of matched n-ary splittings, equivalence classes and multi-
plication on the classes, we get a group F), » based on pairs of finitary
forests of n-ary trees and order preserving bijections between the sets
of leaves. We have the following.

ProproOSITION 38.3. Fix an integer n > 2. For each r > 1, the
operation E* induces an isomorphism from F, , — F,, . Thus with n
fized, all the F, , are isomorphic.

The notations £}, , and [}, o still have use, and F,, will ambiguously
refer to any of these isomorphism types.
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38.2.2. Fractions, a presentation and consequences. In a fintary n-
ary forest, let us call a vertex internal if it has children, and let us call
a leaf trivial if it is also a root (and thus is in a trivial tree). Induction
says that if £ > 0 is the number of internal vertices, then the number
of non-trivial leaves is k(n — 1) + 1. The case k = 0 is an exception
which can only be cured by declaring that the forest of trivial trees has
one non-trivial leaf.

Building F,, from the pairs of finitary n-ary forests will give a pre-
sentation for F},. The finitary n-ary forests form a monoid F,, as done in
Sections 11.2.3 and 11.2.4 for F. The method for describing generators
of F,, is useful when dealing with both finite and finitary forests.

Let @ be an n-ary forest, finite or finitary. With k£ < oo the number
of leaves, with ¢ < k, and with leaves numbered in order starting at 0,
let ®; be the result of an n-ary splitting of ® at leaf i. With X,, the
trivial, finitary, n-ary forest, the generators of F,, are the X,,; = (X,,) ;.
Specifically, X,,|; is a finitary, n-ary forest with a single non-trivial tree
having one internal vertex and where that tree is the i-th tree of the
forest.

PROPOSITION 38.4. The group F, « s a group of fractions of F,.
The presentation

(381) <XnJ,O> Xn¢l> S ’ Xni,anJ,i = Xn“XnUJrn,l whenever 1 < j>

is a monoid presentation for F,. Using g,; as a formal symbol, a
corresponding group presentation for F, . and for F), is

(382> <gn,0> anity--- | 9n,j9ni = Gn,ign,j4+n—1 whenever i < j>

PROOF. That F),  is a group of fractions is established as done for
F in Section 11.2.4 through Corollary 11.6.3. The argument that (38.1)
is a presentation for JF,, can be copied from the proof of Proposition
11.7. The last claim is standard from the first two points and because
F,, represents the isomorphism class of F}, . O

COROLLARY 38.4.1. The group F), is generated by the n elements
in A, = {gn: | 0 < i < n}. The abelianization of F,, is Z™, and
F, is isomorphic to F,, if and only if n = m. The abelianization
homomorphism can be described by letting Z" be the free abelian group
on the integers modulo n and sending g, o to 0, and each gy ;, 1 € Z>1,
toje{l,....,n—1} with j =i (mod n — 1).

PROOF. Each generator in (38.1) is conjugate by a power of g, ¢ to
an element of A,. All the relations in (38.1) are conjugacy relations
and add no information if the generators are declared to commute. []
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Arguing as in Lemma 9.5, we see that a seminormal form for words
in the g} is

(38.3)  Gnio " Gninny  Gnser G0 <o Sk F G =00 > o,

LEMMA 38.5. Every non-trivial normal subgroup of F,, contains the
commutator subgroup.

PROOF. The proof can be copied from that of Proposition 9.7 up to
the last argument that shows that [z, z;] = 1 modulo any non-trivial
normal subgroup in F. That argument can be adapted to show that
[Gn,is gnj] = 1 for all 0 < i < j < n modulo any non-trivial normal
subgroup in F,. 0

More information about the commutator subgroup will have to wait
until Section 38.3 where we represent the F), as groups of homeomor-
phisms.

Let o, : F, — F, be defined by 0,(¢ni) = Gnit1. This is an
endomorphism of F},, and o, = Cyo,, composing right to left and with
Cy conjugation by g¢,0. The following is a parallel to the material in
Section 10.2. Details are left to the reader.

PROPOSITION 38.6. The triple (F,, 0n, gno) is an initial object in
the category of groups with an endomorphism whose first and n-th pow-
ers differ by an inner automorphism. Further if n is a morphism in that
category from (F,o,xq) to some (G, ¢, g), then either n is an injection,
or the image of n is abelian.

We also have a parallel to Section 10.3. For an integer £ > 0,
it we let F), >, be generated by the g,; with ¢ > k, then F, > is a
subgroup of F,, = F), 5o isomorphic to F,, which is the image of F),
under the endomorphism o*. If we use k = n — 1, then 0" ! carries
F,, >1 isomorphically to £}, >,, which is exactly what conjugation by g, o
does. Thus F), is the HNN extension of F,, >, using o' and stable
letter g, 0. We have that [}, is an ascending HNN extension of itself.

38.3. Actions. Most of the information in Chapter 2 about F
came from its existence as a group of homeomorphisms. Here we res-
urrect this point of view for the Fj,. Parallel to the treatment of the
groups using pairs of n-ary forests, we also have the treatment with
pairs of n-ary partitions and thus also piecewise linear homeomorh-
pisms. We have the following.

LEMMA 38.7. The group F, , is naturally isomorphic the set of self
homeomorphisms of [0, r], under composition, that are piecewise linear,
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have slopes restricted to integral powers of n, and whose breakpoints are
confined to the elements of Z[+].

PROOF. The proof can be copied with trivial modifications from
the proof of Proposition 6.14 after associating the i-th tree of a finite

n-ary forest of length r to an n-ary subdivision of the interval [i,i + 1]
in [0, 7]. O

If we now associate a finitary n-ary forest with a sequence of n-ary
subdivisions of the intervals [i,7 + 1] in [0, 00), we see that a finitary
n-ary forest pair leads to a self homeomorphism of [0, c0) that is a shift
by a multiple of n — 1 near infinity. We have the following.

LEMMA 38.8. The group F), ~ is naturally isomorphic to the set of
self homeomorphisms [ of [0,00) under composition that are piecewise
linear, have slopes restricted to integral powers of n, whose breakpoints
are confined to Z[%], and for which there are integers j and k so that
t > j impliestf =t + k(n —1).

Turning the g,,; into piecewise linear homeomorphisms on [0, co)
gives generators y,; for the PL version F, >¢ of F, . The y,, are
defined for non-negative integers ¢ as follows.

£, t <,
(38.4) tyni = An(t—i)+i, i<t<i+l,
t+n—1, t>1+ 1.

If we temporarily define 2, ; = y, ;—1 for all integers < > 1, and define
Zn0 Dy setting tz, o = t+(n—1), then we see that 2, ;2,; = Zn,i%n,it+(n-1)
holds for all ¢ < j. Thus the non-abelian group F,, g generated by the
Zn; 15 a quotient of F,, and thus isomorphic to F,.

LEMMA 38.9. The group F,r consists of those self homeomor-
phisms f of R under composition that are piecewise linear, have slopes
restricted to integral powers of n, whose breakpoints are confined to
Z[%], and for which there are integers j and k, p and q so thatt > j
implies tf =t +k(n—1) and t < p implies tf =t+ q(n —1).

38.4. Generators for the F,,. From Lemmas 38.7 and 38.8 we
see that the elements of F,, , viewed as acting on [0, 7] are the elements
of F,, o viewed as acting on [0, 0o) that fix all points outside [0, 7]. This
embedding of F, , into F,, , and the isomorphism using £* of Propo-
sition 38.3 between F,,, and F), », will help us understand generators
of F,,,. This will also help to understand the 75, .

It is useful to know for which finite forests ® is E°°(®) the trivial
forest. Generalizing the vines of Definition 8.13, we say that an n-ary
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tree is a vine if the number of internal vertices all of whose children are
leaves is one. The right vine is the vine in which every internal vertex
is the rightmost child of its parent. To avoid notational conflict with
the groups V,, ., we will use I, ; to denote the right n-ary vine with &
internal vertices. It is now clear that a finite n-ary forest ® has E*°(®)
the trivial infinite forest if and only if every tree in @ is trivial except
possibly the last which must then be a right vine.

From the presentation (38.2) we know that {g,; | 0 < ¢ < n} is
a generating set for F,, ... Using the notation of Proposition 38.4, we
can express ¢y, as the finitary forest pair (X, ;, X,,). If @, is the finite,
trivial n-ary forest of length r, and ¢ < r—1, then X,,|; = E*(®,;), and
X, = E®(®,y(r—1)). Further ®,; and ®,(_1) have the same number
of leaves. To generate F,,, >~ F), ,, we need ¢,; with 0 <7 < n up to
n — 1, so it will be convenient to continue under the assumption r > n.
The reader can do the alterations needed for smaller values of 7.

38.4.1. Glides. We now see that for » > n, the finite, n-ary forest
pairs (®,,;, @, (r—1)) generate a group isomorphic to F),, as defined in
Section 38.1, and which is isomorphic using E* to the subgroup of
F, o generated by the pairs (X, 5, Xy r—1)) for 0 <7 < n.

Fori < j, pairs such as (X, ;, X,y;) and (®,;, ®,;) are called glides
in Section 4.10 of [34], and given the notation ~;; or ~; ;. We will use
this notation ambiguously for elements of F,, -, and for elements of F;, ,
when j < 7. In terms of the generators of F), o, we have 7,; = gmg;}.
For i < j < k, we have v;;vjx = vir. As in [34], we will use ~; for v, ;11
giving

(38.5) Yij = ViYit1 V-1
For r > n, we see from (38.5) that F},, is generated by {7, | 0 < <
r—1}.

The support of v; in F,, o acting on [0,00) or any F, , acting on
[0,7] with » > i+ 2 is [i,i + 2]. From Corollary 38.4.1, the product
D=7 Yn-1 = Vin = gn,lg;}L is in the commutator subgroup of
F,

n-

38.5. Transitivity. The various actions given above of F}, are not
transitive on Z[1] for n > 2. We show that the orbits on Z[X] are
separated by residues modulo n — 1.

An element ¢ of Z[1] is of the form t = p/n? for integers p and g.
Since n = 1 (mod n — 1), setting ¢,(t) = p (mod n — 1) has ¢,, well
defined in that it is independent of the chosen p and ¢, and makes ¢,
a ring homomorphism from Z[X] to Z/(n — 1)Z. We let A,, denote the
kernel of ¢,,. The reader can show the following.
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LEMMA 38.10. In the actions of F,, on (0,1), of F,, on (0,7),
of Fo>0 on (0,00), and of F,r on R, two elements s and t of Z[%]
in the given domain are in the same orbit of the action if and only if
Pn(s) = dn(t). For all of these actions and for each k > 1 and t € Z[%],
the action on the intersection of the coset (t + A,,) with the domain of
the action s o-k-transitive.

We can give more information than Lemma 38.10 with the following
parallel to Lemma 5.3. We state it for the action of F}, g on R, but
it applies with appropriate modifications to all the actions in Lemma
38.10.

LEMMA 38.11. Let A and B be finite subsets of Z[] with |A| =
|B| and let X be a collection of closed intervals with pairwise disjoint
interiors in I so that each J € X has its endpoints in A and no points
of A in its interior. Let o be an order preserving bijection from A to
B so that ¢n(ac) = ¢n(a) holds for all a € A, and for each J € X let
gy be the restriction to J of an element of F,, r which agrees with o on
the endpoints of J. Then there is an element f € F, r with bounded
support so that f agrees with o on A and for each J € X, f agrees
with g5 on J.

38.5.1. A more transitive group. There is a Thompson-like group
that is more transitive. Consider the group F,, generated by the v, ;
and the function ¢t +— ¢ 4+ 1. The elements are piecewise linear, have
slopes integral powers of n, and have breakpoints confined to Z[%]
But near near +o00, the action is translation by integers and not just
multiples of n — 1. The abelianization of this group is Z2, and so the
group cannot be isomorphic to any F,, for n > 3. The group is fully
transitive on all of Z[1].

To understand the relation F;, < ﬁn, note that the for every genera-
tor of fn, the translations near oo and —oo differ by an integral multiple
of n— 1. So if for f € F,, we let 7+ (f) be the translation by f near
oo and 7_(f) be the translation by f near —oo, then 7,.(f) = 7_(f)
(mod n—1). So f — 7(f) is a homomorphism from F}, to Z/(n—1)Z

whose kernal is F,,, and |F,, : F,,| =n — 1.

The action of F,, on R invites the use of forests indexed over Z
rather than N. If this is done, then it is no longer sufficient to rely
on the total order on the leaves to determine the bijection between the
leaves if the bijection is omitted. So an origin is needed and instructions
on where it is mapped. Binary forests indexed over Z are developed
for F' in Belk-Brown 2005 [9]. If the construction in [9] is altered to

use n-ary forests, then the result is a combinatorial model for ﬁn



38. THE HIGMAN AND BROWN VARIANTS 225

38.6. About the F,,. Many properties of F' apply to the F},. To
a large degree this is because, like F', the F), represent faithfully into
PL.(I). We leave the verification to the reader.

We have the following about the local behavior of the action of F),
on /.

LEMMA 38.12. For an integer n > 2, the following hold regarding
the action of F,, on I =[0,1].

(1) For every rational r in (0,1), there is an f € F,, for which r
s an isolated fixed point.

(2) If f € F,, has an isolated rational fized point r which in reduced
terms has a prime factor p of the denomator with p prime to
n, and the slope of f at r is n¥, then then p|(n* —1).

(3) If f € F,, has an irrational fized point t, then f is fired on an
open interval about t.

More globally, we have the following. Arguments can be found in
Sections 4.4 through 4.7, 5.2, 5.4 and 9.4.

LEMMA 38.13. Let n > 2 be an integer. The group F, is tor-
sion free, is bi-orderable and locally indicable, has trivial center, has
its subgroups closed under wreath product with Z, and has that each
non-abelian subgroup contains a copy of Z U Z and is neither free nor
nilpotent. There are infinitely differentiable actions of F,, on R, Rx
and (0,1).

About the commutator subgroup, we have the following. Argu-
ments can be found in Sections 5.5 and 10.

LEMMA 38.14. For each positive integer n > 2, the first F! and
second F!' commutator subgroups of F,, are equal, simple, not finitely
generated, contained in every non-trivial normal subgroup of F,,, and
act o-k-transitively on each coset t + A,, with t € Z[%] and k a posi-
tive integer. Further every element of F) is a product of two or fewer
commutators.

The discussion in Section 5.6 about the centralizers of elements of
F applies with no real change to the F,,. We will not bother to repeat
the statements here.

Similarly, the discussion running through Propositions 6.17, 7.5,
8.9, and Section 11.4 about reduced representatives and normal forms
also applies with no real change to the F,,. The curious reader can
write out the details.
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38.6.1. Mutual embedability.

LEMMA 38.15. If 2 < m < n, then F,, and F,, homomorphically
embed in each other.

PRrOOF. All symbols in subscripts below are non-negative integers.

It is easy to show F}, embeds in F), for all m < n. The group F), is
generated by the g, ;, ¢ > 0, of (38.1). We will use some but not all of
the g, as generators of a copy of F,,, in F,.

Each j > 1 is uniquely expressed as j = 1 + ¢(m — 1) + r with
0 <r<m—1. With j expressed this way, let j' =1+ ¢(n —1) + r.
Let 0/ = 0. Note that j < k implies j' < k.

For each j > 1, let f,,,; = gnj/- Let foo = gno. For brevity, write
fj for f.; and g; for g,;. For j < k=14 ¢q(m — 1)+ r, we have

fi _ 9 _ _
k _gk‘/ = gk’'+n—1 = gl+q(n—1)+7~+n_1

=01+(g+1) (D47 = S14(g+1)(m—1)4
:karmfl .

So the f; = f,,; satisfy the relations of the presentation (38.2) for £,
and we have homomorphism F,,, — F,,. Since the f; do not commute,
Lemma 38.14 says this must be a monomorphism.

Since Fy embeds in every F),, to show that F), embeds in every F;,
with m < n it suffices to show that F}, embeds in F,. The group F5 is
generated by the x;, i > 0, of (9.1). Let f; = 27"~ '. Now for i < j, we
have

; n—1\z" ! n—
f]fz = (« el = $j+$_1 = fitn-1
as required. The comments made at the end of the embeding of F),
into F,, now apply. O

From Lemma 5.25, we have the following.
COROLLARY 38.15.1. Forn > 2, each F,, has exponential growth.

38.7. On the T,,,. Elements of the group 7,,, are represented by
pairs (®,0,¥) where ® and ¥ are forests of type (n,r) and o is a
bijection from the leaves of ® to the leaves of W that preserves the
cyclic order of the leaves. As usual, matched n-ary refinements and the
resulting equivalence relations and classes are defined and opportunistic
multiplication is applied to arrive at a group. If for 0 < ¢ < r, we regard
the i-th tree in each of the forests ® and ¥ as defining an n-ary partition
of [i,7 + 1], then we obtain the following.
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PROPOSITION 38.16. The group T, , acts faithfully on the circle
R/rZ of length r by piecewise linear, orientation preserving homemor-
phisms where the slopes are integral powers of n, where the breakpoints
are confined to Z[x] and where Z[+] is preserved as a set.

In the discussion that follows, it will be useful to view the of ele-
ments of 7}, , both as homeomorphisms and as forest pairs.

38.7.1. Transitivity and an invariant. We lift T,, . to R. Let PL, (R)
be those piecewise linear self homeomorphisms of R whose slopes are
integral powers of n, whose breakpoints form a discrete subset of Z[%]
and which preserve Z[1] as a set. If 7 is the translation 7 = ¢ 4 r,
and if C(7) is the centralizer of 7 in PL,(R), then T}, , is isomorphic
to C(7)/(T).

Consider the homomorphism ¢,, : Z[1] — Z/(n — 1)Z of Section
38.5 and its kernel A,,. We refer to ¢, (a) as the “residue” of a € Z[1]
modulo n — 1. If ® is an n-ary forest of length r, then a vertex v in
® is associated to an interval [s,t] in [0,r]. We declare ¢,(v) to be
®n(s). We note that, modulo n — 1, we have ¢,(t) = ¢,(s) + 1, and
if v has children identified as v0,v1,...,v(n — 1) reading from left to
vight, then g, (i) = 6, (v) + i making G (00) = b (v(n — 1)) = 6,(v).

In parallel to Lemma 38.10, each f € PL,(R) induces a rotation of
the cosets of A, in Z[1] and thus a rotation on Z/(n—1)Z. For T, ,, we
must take into account the identification of cosets of A,, that takes place
in R/rZ, or equivalently under the action of 7. The representatives of
A, in Z are the multiples of n — 1, and the images of these multiples
in Z/rZ are the residues {j(n — 1) (mod r) | j € N}. These are all
j(n — 1) + kr between 0 and r — 1 and are thus the multiples in that
interval of d = ged(n — 1, 7). There are thus d cosets of A, in Z[1]/rZ.

For f € T,,, given by (®,0W) we let

0(f) = (én(vo) — ¢n(v)) (mod d)

for any leaf v of ®. This is well defined since o rotates the order of the
leaves. It gives us a normal subgroup of 7T, ,.

LEMMA 38.17. With d = ged(n — 1,7), taking f € T,,, to 0(f) in
Z/dZ is a homomorphism whose kernel Tff’r of 0 is a normal subgroup
of T, of index d in T,,.

For the rest of our discussion of 7, ., we will consistently use d for
ged(n —1,7).

38.7.2. Generators and some relations. It will pay to have enough
room to discuss generating sets without having a lot of special cases.
From Lemma 38.2, we can alter » modulo n — 1 so that » > n. Note



228 6. VARIANTS OF THOMPSON’S GROUPS

that this makes no change to our invariant d. We will make r > n an
occasional assumption below.

The glides v; from Section 38.4 act on R with support in the interval
[i,7+ 2], Since r > 2, we can view ; as acting on R/rZ and thus as an
element of T),,. We have v; = ; if and only if ¢ = j (mod r), giving
us r different glides of the form ;.

With T, . acting on [0, ] with the endpoints identified, the subgroup
of T, fixing 0 can be viewed as F),, which, from Section 38.4, is
generated by the (r — 1) glides in {; | 0 <i <r —1}.

We introduce some rotations. They start with the rotation o of
order r acting as to =t + 1 (mod r) on the circle R/rZ, but we need
more. Let ®,, = ®,, the finite, trivial n-ary forest of length r from
Section 38.4. Let ®, ;41 be the result of doing an n-ary splitting on the
rightmost leaf of @, . Specifically @, starts with r — 1 trivial trees,
and the last tree is the right vine R, ;. Let g be given by the pair
(®y g, Ok, Pr.i) where oy, takes leaf i to leaf i+ 1 in the usual numbering.
We have gy = o.

LEMMA 38.18. (I) The following relations hold where subscripts of

the v’s are treated modulo r.

(i) o'y = is1-

(ii) %112@ = 01-

(iil) v-17071 - Yr—2 = (01)

(IV) anl = Yr—nYr—n+1" " Vr—170 """ Vr—2-

(II) For r > n > 2, the group T,, is generated by o and vy. The
kernel T)) . of 0 from Lemma 38.17 contains o* with d = ged(n — 1,7)
and equals the subgroup I of T,,, generated by the glides in {~; | 0 <
i<r}.

n—1

PROOF. Items (i), (ii), and (iii) are verified by direct checking. Item
(iv) can be derived from (iii) using (ii) to first eliminate o;, and then
(i) to move appearances of ¢ to the right and gather all appearances of
o together.

From Item (i), we know that F),, is in (o,70). Modulo F, ,, every
element of T}, . equals some rotation (P, o, P). And each rotation of the
form (P, o, P) is conjugate by an element of F, , to a power of some
ok. From Item (ii) we have g in (0,70). With all elements of F, ,
available, parallels to Item (ii) can be built to inductively get all the
ok in (p,7). This shows the first sentence in (II).

From (i), every element of 7}, , can be written as a product of glides
followed by a power of p. Since we have 0(p) = 1 and 6 of any glide
is 0, we have that o and glides generate 7)0,. In particular I' C T} .
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But o has order r, so ¢" =1 € I' and (iv) has ¢" ! € T, so ¢ € I' and
T}, CT. This proves the second sentence in (II). O

38.7.3. A second invariant. We work with an element f of T;,, as
given by a forest pair (®, 0, ¥). We also note that f can be given as a
product of glides followed by a power of p. Our invariant will live in
Z x Z/dZ where Z¢ is regarded as the free abelian group generated
by the symbols e;, 0 < i < d, and our preferred generator 7 of Z/dZ
acts on the d-tuple a in Z% so that (7(«)); = a;11 with subscripts using
arithmetic modulo d. Note that 7(e;) = €;_1.

Let ® be an n-ary forest of length r and let v be a vertex of ®. Let
on(v) € Z/(n — 1)Z be as defined in Section 38.7.1. Since d|(n — 1),
we can let pg(v) € {0,...,d — 1} be the residue of ¢, (v) (mod d). Let
I(®) be the set of internal vertices of ®. Define

(38.6) pa(®) = > ey €27
vel(P)
Let f in T,,, be given by (@, 0, ¥), and let 6(f) € Z/dZ be as given
in Lemma 38.17. Set

(38.7) n(f) = (pd@) — ) (pd@)),#(f)) € 29 x ZdZ.

LEMMA 38.19. Forn > 2, r > 1 and d = ged(n — 1,r), the map
n: Ty, = ZXZ/dZ is a well defined homomorphism. We have 1(7;;) =
(s —e€j,0) with i' =14 (mod d) and j' = j (mod d). The image of n
is all (o, 7%) € Z4 x Z/dZ, where the sum of the entries in « is 0 in Z.

PROOF. None of the conclusions specifically mention r. As men-
tioned at the beginning of Section 38.7.2, we can increase r modulo
n — 1 so that Lemma 38.18 applies.

All hinges on the well definedness of 7. For well definedness, it
suffices to show that for f = (®, 0, V), the value of 1 does not change
when a matched n-ary splitting is applied to (®, o, V).

A matched binary splitting of (®,0, V) applies a binary splitting
to some a v of ® and a leaf vo of ¥, turning v and vo into internal
vertices of their respective trees, and making no other changes to the
internal vertices. We have pg(vo) = pa(v) + 0(f), and the modified
bijection takes v0 to (vo)0 where py(v0) = pg(v) and pa((ve)0) =
pa(vo). So we have added e,,(,) to both ps(®) and 79 ps(¥), proving
well definedness.

Now that 7 is well defined, it can be noted that it was built to be a
homomorphism. The value of n(v;;) is immediate from the definition.
Since ¢ can be represented by a pair of trivial forests, we have n(g) =
(0,7). Since 7 is a homomorphism and any f € T, is of the form wg"
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where w is a product of glides, the claim about the image of n follows
from our knowledge of n(7v;;) and n(p). O

38.7.4. Normal subgroups.

PROPOSITION 38.20. For 2 < n, r > 1 and d = ged(n — 1,7),
the subgroup T,?m of Lemma 38.18 consists of those f € T, , where the
second coordinate of n(f) is 0. Let Ty, be the commutator subgroup of
Ty and let TS . be the kernel of n. Then TS, <T¢, <T? <T,,. The
group T3 is the second commutator 3ubgr0u7p of Tnm, and is also the
commutator subgroup of Tff’r. We have the following quotients.

(1) TW/TT?J ~ 7/dZ.
(2) Ty /Ty, ~7/dZ x Z/dZ.
(3) TO, /T3, ~ 20,
Lastly, T is simple and contained in any non-trivial subgroup of

n,r

T normalized by the elements of T} .. Unlessd =1, T; #T; ..

PROOF. None of the conclusions (e.g.., the right sides of (1)—(3))
specifically mention r, and as in the proof of Lemma 38.19, we can
increase r modulo n — 1 to make it as large as necessary for arguments.

From Lemma 38.17, the group T}, is the kernel of 6 : T}, , — Z/dZ.
The homomorphism is onto since #(p) = 1. This verifies (1). Further if
7 is the projection from Z¢ x Z /dZ to the abelian second factor Z/dZ,
then 7)) is the kernel of 7 : T,,, — Z/dZ, and the image 7(T}),) lies
in the abelian Z? < Z? x Z/dZ. Denoting by (T)?,)" the commutator
subgroup of T° . we have from all of this that

n,r’
0 \/ s 0 c 0
(1,,) T, <T, . aT,,, and T} T, .

This makes 7)) /T . a quotient of T, . /(T7) ).

We wish to show 77 C (7),)". From Lemma 38.18, T}, is gen-
erated by the glides in {7; | 0 < i < r} and so from Lemma 38.19,
n(TY,) is all (o, 0) € Z% x Z/dZ where the sum of the entries in « is
0in Z. So n(T;,) =T, ,./T;, is isomorphic to Z* . We compare this
to T,/ (T3,)'-

All equélities that follow in this paragraph and the next are modulo
(7),)'. From Lemma 38.18, 7)) is generated by glides and contains
0%, so we have that v; = 7; if i = j (mod d). Thus T, /(T ,) is no
bigger than a quotient of Z¢. Lemma 38.18(iv) says that ¢" ! equals a
product of 7 +n — 1 consecutive ~;, and so we have 0"~ ! equal to the
product of d consecutive ~; raised to the power (r +n —1)/d. Letting
t be the product of d consecutive 7;, we have "1 = ¢tr+n=1/d,
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From the remarks at the end of Section 38.4.1, we have t(*~1/d = 1.
This gives g" ! = t"/4. We will twice exploit the fact (1) that (n—1)/d
and r/d are relatively prime. Now ¢"/¢ has order dividing (n—1)/d and
0" = 1 gives that ¢"~! has order dividing r/d. So t"/¢ = 1 using (1).
Now t = 1, again using (). So T}, /(T}),)" is no bigger than a quotient
of Z'. So T#,. C (T7,). Also (3) has been verified.

Since Tj3 . = (T)),)" C Ty, we have all the containments claimed in
the statement and all claims of normalities. We look at (2).

Since T,, . € Ty ., the quotient T,, . /T}; . is isomorphic to the abelian-
ization of T,, /Ty, or the abelianization of the image of 7. The image
of n is in Z¢ x Z/dZ with Z? generated by e;, and the image generated
by n(0) = (0,1) and the n(v;) = (e; —e;+1,0) with all subscripts treated
modulo d. The action of p is to conjugate 7; to ;41 so after abelian-
ization, all the 7; become a single element v. Now ~? is equivalent to
YY1 - - - Ya—1 which is in the kernel of . So 4% = 1 in the abelianization.
For 1 < k < d, the image of v" is ef — e} and we have that T, , /T, is
isomorphic to Z/dZ x Z/dZ.

We prove the simplicity of 7). = (7),)'. We use Higman’s argu-
ments from [106] as used in the proof of Proposition 5.12, and prove
that T,?m is abelian modulo the normalizer in 777 of any non-trivial el-
ement in 777, The group T,?}T is generated by the ~;, and ~; commutes
with v; unless |i — j| = 1. But the support of I'; = (v;,7:+1) is an
interval of length 3. By raising r, we can assume we have r > 5.

Let us temporarily denote by F; the subgroup of 7, that fixes
t € Z[%]. This is isomorphic to F,, and is a subgroup of T since it
fixes t. The image of F; under 7 is abelian, and so its commutator
subgroup Fy is a subgroup of T,;,. We choose ¢ not in the closure of
the support of I';, and the transitivity of F} and Higman’s argument
from the proof of Proposition 5.12 completes the proof. Details are left
to the reader.

Finally, the difference between (2) and (3) shows that T . # Ty,
when d # 1. O

COROLLARY 38.20.1. Forn > 2 andr > 1, the group T, , is simple
if and only if ged(n — 1,7) = 1.

38.7.5. Isomorphisms and mutual embedability. As of this writing,
there is not complete classification of the 7}, , up to isomorphism, nor is
the embedability relation on the T}, , completely understood. We give
some partial information.

The following is immediate from Proposition 38.20 and Lemma 38.2.
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PROPOSITION 38.21. Letn > 2, m > 2, r > 1 and s > 1 be
ntegers.

(1) If T, is isomorphic to Tp, s, then ged(r,n—1) = ged(s,m —1).

(II) If r = s (mod n — 1), then T,,, is isomorphic to T, s.

(III) The groups T, n—1 and Ty, m—1 are isomorphic if and only if
n=m.

We can say something about the embeddings between the T;, , by
looking at torsion. It is easy to show that if f € T,,, has finite order,
then f can be represented by some (P,0,Q) with P = Q. So if the
order of f is 7, then the number of leaves of P must be a multiple of j.
The number of leaves of an n-ary forest of length r is r + k(n — 1) for
some integer k. Thus Tor(7,, ), the set of finite orders of elements of
T, must be the set of divisors of {r + k(n — 1) | k € N}. This gives
necessary conditions for embedding.

LEMMA 38.22. If T, s embeds homomorphically in T, ,, then the
divisors of {s + j(m — 1) | j € N} must be a subset of the divisors of
{r+k(n—1)| ke N}

We get sufficient conditions by imitating the proof of part of Lemma
38.15. There, F, is embedded in F, by using g; = 27~ * as a generator of
F,. This works, because in the monoid of finitary, binary forests, z"~*
represents a single non-trivial tree with n leaves and root at position <.
Many other words (such as z;x; 1242 - - -xi+(n_1)) could have done as
well if used consistently.

In the monoid of finitary n-ary forests, it is possible to build a tree
at position ¢ with 1+ k(n — 1) leaves for any k € N. For example, g} ;
will work. Further, the r + j(n — 1) leaves for some j € N of a finite
n-ary forest of length r can be used as attaching vertices for the roots

of a finite n-ary forest of length r + j(n — 1).

LEMMA 38.23. Letn>2, m>2,r>1and s > 1 be integers with
n<mandr <s. If (n—1)[(s —r) and (n — 1)|(m — 1), then T,
embeds homomorphically into T, ,.

PROOF. This is mostly left to the reader. Given (P, o, Q) repre-
senting an element in T, ;, finding (P, 0, Q)') that represents the cor-
responding element in 7, , is straightforward. To show that this is
a homomorphism, one notes that multiplication in 7,, ; hinges on se-
quences of matched m-ary splittings and their effect on the rotations.
If the shape of the n-ary tree having m leaves is used consistently
throughout, then a single matched m-ary splitting in 7, ; corresponds
to a fixed sequence of matched n-ary splittings in 7;, .. It then follows
that the assignment is a homomorphism. 0
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38.8. On the V. Much can be adapted from the discussion for
V in Section 13. We will work with the view of V' as a group of actions
on the Cantor set €. To move to V, ,, we will start with the n-ary
Cantor set €, regarded as elements of X7, and then look at 7 x €,
which we denote by r¢&,, where 7 = {1,...,r}. Now elements of f€,
are elements of 7 x X}’ consisting of words w that start with wy € 7
and that are followed by elements of X

A prefix set U for r&, has the predictable definition and prefix
sets are naturally in one-to-one correspondence with leaf sets of n-ary
forests of length r. We have the following parallel to Lemma 13.12 and
its corollary.

LEMMA 38.24. For integers n > 2 and r > 1, the following s true.
Let A = {u1&,, ..., ux@,} and B = {v1C€,,...,v.EC,} each be a set of
pairwise disjoint cones that do not cover r&,. Then there is an element
f € Vor so that for each i € {1,...,k}, the restriction of f to u;&, is
the rigid cone map to v;€,.

COROLLARY 38.24.1. The group V,,, is closed under deferment.
We did not prove a parallel to the next Lemma in Section 13.

LEMMA 38.25. If H s a finite subgroup of V,,,, then there is an
n-ary forest © of length r so that every h € H can be represented as
(0,0,0) for some bijection o on the leaf set A(O) of P.

Proor. Each h € H is represented by a forest pair whose domain
forest is some ®;. Let ¥ be the union of all the ®;. By this we mean
that the i-th tree of U is the union of all the i-th trees of the &y,

Let © be the union of all the forests in {(V)h | h € H}. By (¥)h we
mean the forest whose leaf set is (A(¥))h. See Lemma 8.8. Every leaf
of © is a leaf of (¥)h for some h. We claim that © has the properties
that we seek.

Let u be in A(©) and g in H. If ug is not a leaf of ©, then either
(i) a proper descendant v of ug is a leaf of © or (ii) ug is a proper
descendant of a leaf v of ©. In case (i), v = wh for some leaf w of ¥
and some h € H, and z = vg~! = w(hg™') is a proper descendant of
u. But our construction of © guarantees that no leaf of any (¥)h is a
proper descendant of a leaf of ©. In the case (ii), u = w'h’ for some
w' € A(V) and A’ € H, making 2’ = ug = w'(lh/g) a proper descendant
of v € A(©) which is again impossible. O

The discussion of normal subgroups is less complex than for the

T,.», but not quite as trivial as for V. We start with the following
where the definitions are in the same spirit as Section 13.2.
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PROPOSITION 38.26. Fix integersn > 2 andr > 1. Any two proper
transpositions are conjugate in Vi, ., and any two proper 3-cycles are
conjugate in V,, .. The proper transpositions generate V,, . and the nor-
mal closure of any proper transposition is all of V. If n is even, the
normal closure of any non-trivial element contains a proper transposi-
tion, and V,, is simple. If n is odd, the normal closure of any non-
trivial element contains a proper 3-cycle and V,, . has a simple subgroup
of index 2.

ProOOF. We will give the details for the last sentence that covers
the case when n is odd. The rest is left to the reader guided by the
material in Section 13.2. Only minor modifications will be needed, and
Lemma 38.25 also helps.

We write permutations as products of cycles such as (a b ¢)(d e)
since more than transpositions will be involved.

As in the proof of Theorem 13.17, a non-trivial f moves some cone
u@, rigidly off itself. Let v€, = (u€,)f. There are at least u0, ul and
u2 as children of u, and v0, v1 and v2 as children of v. The commutator
of fand (u0 ul) is g = (u0 ul)(v0 v1l). The commutator of g with
(10 v0) is b = (u0 v0)(ul v1). If j = (u0 ul)(v0 v1 v2), then hjh='j~!
is (ul vl v2) and is in the normal closure of f.

We turn our attention to the simple subgroup of index 2. Given a
permutation on a finite totally ordered set J, we define

x(o)=#{(,5) e I x J|i<j, ioc >jo} (mod 2)

where #5S' is the number of elements of a finite set S. The value x(o)
counts modulo 2 the number of pairs that ¢ puts out of order, and
determines whether o is odd or even.

Given f = (P,0,()) representing an element of V,, ., we declare
X(f) = x(o) and need to argue well definedness. If a matched n-
ary splitting is applied to the leaf v of P and the leaf vo of ) giving
(P',0',Q"), then the set S” of disturbed orders for x(¢’) differs from
the set S for x(o) in that every time v appears in a pair in .S, that pair
is replaced by n pairs in S’. No other changes take place. If n is odd,
the replacement increases the count by n — 1 for each appearance of v
in a pair in S and the parity does not change. That x is a surjective
homomorphism to Z/2Z now follows from the details of opportunistic
multiplication.

The kernel of x are those (P, 0, Q) where o is an even permutation.
Every even permutation is a product of 3-cycles, and every non-trivial
normal subgroup N of V,, has been shown to contain all proper 3-
cycles. It is straightfoward to argue that all f in the kernel of x will
be in N. 0
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We will use V. to denote the simple index two subgroup of V.
from Proposition 38.26 when n is odd, and V,,, when n is even. From
the results in the next section, we have that the V7 form an infinite
family of countable, simple groups.

38.8.1. Isomorphisms and mutual embeddability. The groups V.
and anr are classified up to isomorphism. That is, there are condi-
tions on the pairs (n,r) that are both necessary and sufficient for the
corresponding groups to be isomorphic. The conditions are that the
groups given by (n,r) and (m, s) are isomorphic if and only if n = m
and ged(r,n —1) = ged(s,m —1). That the conditions are necessary is
shown in Higman 1974 [107]. That the conditions are sufficient is shown
in Pardo 2011 [168]. The almost four decade gap between the two is
significant. Below we will give Higman’s proof that the conditions are
necessary.

That the conditions are sufficient needs more machinery and will be
shown in Chapter 7. There it is shown that the V,, , embed as character-
istic subgroups of endomorphism rings of certain algebras. The extra
structure carried by the algebras gives tools sufficient to build isomor-
phisms between the rings, which then induce isomorphisms between
the V,, .. As of yet, no one has built the corresponding isomorphisms
between the V,, , directly.

The necessity of the conditions for isomorphism is shown by count-
ing conjugacy classes of torsion elements in the V,, .. We can start with
a more general discussion of conjugacy classes of finite subgroups of
the V,, ,.

Let H be a finite subgroup of some V,,, regarded as the image of
some embedding a : X — V,,,. Let © be a forest guaranteed by Lemma
38.25 for which every h € H can be represented as (0,0, 0) for some
permutation o on A(O). The orbits of o are representations of H as
transitive permutation groups. There are only finitely many possible
isomorphism classes of such transitive representations (including the
trivial permutation on a set of size 1). For the isomorphism class
of the group H, fix a k-tuple X = (X3,...,Xx) of the full list of
the isomorphism classes of transitive permutation representations of
H. We will use |X;| to denote the size of the underlying set of the
representation X;. We will insist that |X;| = 1 and |Xj| = |H|. Then
there is a k-tuple of non-negative integers ¢ = (ci,...,c) satisfying
IA(O)] = Zlf ¢i|X;|. Since © is an n-ary forest with r trees, we must
have

k
(38.8) Z ¢i|Xs|=r (modn—1).

1
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The tuple c is a function of a, © and X which we can denote c(a, ©, X).

If 8 is another inclusion of H into V,, , keeping a forest ¥ invariant,
with ¢(8, ¥, X) = c(«, 0, X), then the transitivity properties of V,,,
guarantee that 5 and « are conjugate. As a partial converse, if || =
|©| and an element represented by (O, 0, ¥) conjugates « to 3, then
c(a,0,X) =c(5,¥,X).

If c is any k-tuple of non-negative integers satisfying the equivalence
in (38.8), then there is an inclusion v of H into V;,, keeping invariant
a forest © with c(vy,0,X) = c¢. We discuss when different k-tuples of
non-negative integers give conjugate inclusions.

Let o« and 8 be two inclusions of H into V,,,, and let ©, and Og,
respectively, be the forests kept invariant by the two inclusions. We
can symbolize the situation by (0., «, ©,) and (Og, 8, 04). If (¥, 0, ¥)
conjugates a to [, then carrying out the computaton of

(\Ij) 0'717 \I])(@OM 047 @a>(qjv 07 \Ij) = (@,37 57 @,6’)
goes through relevent matched n-ary refinements to arrive at
(‘Ij/> (0_1)/7 \Ij,)(@/om O/7 6;)(‘1ﬂ7 OJ? \I[,) = ( 237 6/7 @/B)

with appropriate equalities of certain of the forests. Most important
will be that ©F, = ©); which we can denote ®, and that o' and 3" are
conjugate by ¢’. From this we get c(o/, ®,X) = c(p', ?,X). We look
at the relation between c(«, ©,, X) and c(o/, @, X).

If a single matched n-ary splitting is done to (©,,q, 0,) at a leaf
v, and v is fixed by «, then the domain and range forests will remain
equal. If v not fixed by «, then the domain and range forests will
become unequal and can only be made equal by doing matched n-ary
splittings at every leaf in the orbit of v under aH. In both cases, one
orbit becomes n orbits, each isomorphic to the orbit of v as permutation
representations of H. If X, is the permutation type of the action of
H on the orbit of v and ¢; is the i-th entry in c(«, ©,, X), then ¢; is
replaced by ¢; + (n — 1) after the splittings are done. Note that ¢;
cannot be 0 in this situation, both before and after the splitting. We
define an equivalence to mirror this.

We write ¢ = d (mod n — 1) to mean that either ¢ = d = 0
or that both ¢ and d are not 0 and ¢ = d (modn — 1). For k-

tuples ¢ and d, we write ¢ = d (modn — 1) if = (modn — 1)
holds coordinate by coordinate. In the situation being discussed, we
get c(a, 0,4, X) = ¢/, ®,X) (mod n — 1), and it then follows that
(o, 04, X) = (8, ©3,X) (mod n —1). The converse is clear and we
have the following.
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LEMMA 38.27. Two k-tuples ¢ and d satisfying the equivalence in
(38.8) give rise to conjugate inclusions of H into V,,, if and only if

c=d (modn—1).

We will use Lemma 38.27 together with (38.8) to count conjugacy
classes of cyclic subgroups of prime power order. If H is cyclic of prime
power order p®, then the full list of the X; for H is (X7, ... X,41) with
| X;| = p*~L. In particular, if H is cyclic of prime order p, then the full
list of the X; for H is (X7, X3) with |X;]| =1 and | X3| = p.

We will need the Chinese remainder theorem (Proposition 50.2 in
the appendix), and the following elementary facts about solutions to
equivalences.

LEMMA 38.28. (I) If a|m and for some x, we have ax = r (mod m),
then alr.

(II) The equation kx = r (mod m) has exactly g = ged(k,m) solu-
tions modulo m if g|r.

The lemma is stated and proved as Lemma 50.3 in the Appendix.

THEOREM 38.29. (1) If the prime p does not divide n—1, then there
are n conjugacy classes of elements of order n in V,,, and in V,f.

(1) If Vi,.r and Vo o are isomorphic or if V.5 and V., are isomor-
phic, then n = n'.

PROOF. (I) The number of conjugacy classes of inclusions of Z/pZ

in V,,, is the number of solutions of () ¢; + cop = r (mod n — 1)
with ¢o # 0. Note that ¢; = 0 and ¢; = n — 1 do not give conjugate
inclusions. With p prime to n — 1, there is a unique solution with
1 < ¢y <n—1to (f) for each value of ¢; with 0 < ¢; < n — 1, and
there are n conjugacy classes in V,, .. If n is even, then anr = V., and
if n is odd, then n — 1 is even and p is odd. An element of order p is
an even permutation and lives in anr. Since p is prime to n — 1, from
the Chinese remainder theorem there are infinitely many m satisfying
both m =7 (mod n—1) and m =2 (mod p). An element h of order p
acts faithfully on the leaves of some tree whose number of leaves is such
an m. The action must fix at least two leaves u and v. The element
transposing v and v is in V,, \ V,\, and commutes with h. Thus a
conjugation of i can be accomplished by an element of V.

(I1) If n # n/, then there is some prime p that is prime to both n—1
and n’ — 1 and the relevant groups have different numbers of conjugacy
classes of elements of order p. O

THEOREM 38.30. (1) If p is prime and a > 0 is the largest integer
for which p*|(n — 1), then there is an (a + 1)-tuple d = (dy, . .., d,) so
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that for each r modulo (n — 1), if b > 0 is the largest integer for which
p°lged(r,n — 1), then the number of conjugacy classes of elements of
order p* in Vy,, or V¥ is S0 d;.

(1) If Ve and Vi, are isomorphic or if V£ and V., are isomor-
phic, then ged(r,n — 1) = ged(r’,n — 1).

PRrROOF. (I) The transitive actions of Z/p®Z on finite sets are pk-
cycles for k < a. So the conjugacy classes of embeddings of Z/p*Z are
in one-to-one correspondence with solutions to

(38.9) Z ep' =7 (modn—1) subject to ¢, # 0.

1=0

The union of the classes under = (mod n— 1) of solutions to (38.9)
over all values of r is simply the set of classes of (a + 1)-tuples ¢ under

= (mod n — 1) with ¢, # 0. Let C denote this union. For 0 < k < q,
let C;. be those elements of C where ¢cg = ¢; = -+ = ¢,_1 = 0 and
Cr # 0.

Fix r modulo (n — 1). We will show that the number of solutions
to (38.9) depends only on b for that r.

If & > b, then p* does not divide ged(r,n — 1) and thus does not
divide 7. By (I) of Lemma 38.28, no element of Cj is a solution to
(38.9) for 7.

If k£ < b, then a solution to (38.9) for r in Cy, is a solution to

(38.10) apt =r— ( Z cipi> (mod n —1).

1=k+1

Note that the expressionon the right is simply r if £ = b = a.

With p¥|(n —1), we have ged(p*, n—1) = p* which divides p® which
in turn divides r and thus also divides the right hand side of (38.10). So
from (I1) of Lemma 38.28, we know that there are exactly p* solutions
to (38.10) for ¢; modulo (n — 1) (which by definition of Cj excludes
¢ = 0) for every combination of values of ¢;, K < i < a and up to

= (mod n — 1), with ¢, # 0. The number of different expressions on
the right is |Cx|/(n — 1) and the total number of solutions to (38.10) is
p¥|Cx|/(n — 1) which we will denote by dj. This gives that the number
of solutions to (38.9) is S20_, di. This completes the claim in (T) for
Vo

Some of the argument to transfer the result for (I) to the V.. can
be done as in Theorem 38.29. In all cases, we will show that elements
of order p® in V. that are conjugate in V;,, are also conjugate in
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anr. What will remain to discuss is the relation between the conjugacy
classes in the two groups when n is odd and V.. # V,, ..

As in Theorem 38.29, we will show that each element of order p* in
V,f. commutes with an element in V,,,. \ V, .. If p is odd, the argument
can be copied from Theorem 38.29. If p = 2, then the orbits of an
element h of order p®, a # 0, all have sizes an integral power of 2, with
at least one orbit having more than one element. The action on this
orbit is an odd cycle, and there is an element of V;, .\ V. whose action
is this cycle and the identity everywhere else. This element commutes
with h.

The discussion of conjugacy classes breaks into cases. We assume
n is odd. If p is odd, then all the conjugacy classes of elements of order
p® lie in V1.

If p = 2, the classes will be different, but in a predictable way. Con-
jugacy classes in V,,, are in one-to-one correspondence with solutions

to (38.9) up to = (mod n —1). With p = 2 each non-trivial orbit of
an element in such a class is an odd permutation and the element will
be an even permutation if and only if Y% | ¢; is even. Using the fact
that (n — 1)/2% is odd and not equal to (n — 1), we see that mapping
of (a + 1)-tuples given by

(Coy €1y vy Cat,yCa) > (CoyCly vy Camt, Ca+ (N —1)/2%)

up to = (mod n —1) is a fixed point free permutation of the solutions
of (38.9) taking even permutations to odd permutations and vice versa.
Hence each conjugacy class in V,, . of an element of order p* has exactly
half its elements in anr. Thus dividing each dj by two gives a tuple
that works as claimed for V,} .

(IT) If ged(r,n—1) # ged(r’,n—1), then for some prime p, different
powers of p divide ged(r,n—1) and ged(r’,n—1). From (I), the relevant
groups will have different numbers of conjugacy classes of elements of
order p® with a as given in (I). O

Lemma 6.5 of [107] shows that no further necessary conditions for
isomorphisms can be found by counting conjugacy classes of finite sub-
groups. But in fact the conditions in Theorems 38.29 and 38.30 are
sufficient. Showing this uses representations of the V,, . into other struc-
tures, and will be covered in Section 40.

Theorem 7.5 of [107] gives a partial converse to Theorems 38.29 and
38.30. We refer the reader to [107] for the proof. The statement of the
result is that if ¢ is a divisor of n, then V,, , and V}, ., are isomorphic. In
Section 41, this is compared to the full converse that is proven there.
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39. End notes

The material on the F, is from Brown 1987 [34]. Material on the
T, is from [34] and Liousse-Hmili Ben Ammar 2020 [111]. Material
on the V,,, is from Higman 1974 [107].

This chapter is far from complete. There are more variations of the
definition to cover, and we have not even touched on marriages. The
history of both goes back to the beginning of the subject with the first
variations appearing in Higman 1974 [107], and Brown 1987 [34], and
the first marriages in Thompson 1980 [189], and Scott 1982 [174, 176,
175]. Variations and marriages are a big part of the Thompson culture
and more will be covered in later editions.
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! Sections 40 and 41 of this chapter deliver material promised in the
end notes (Section 21) of Chapter 3. The goal of these sections is to
introduce the Leavitt rings and algebras and then use them to classify
the groups V;,, up to isomorphism. We start with the Leavit algebras
and how they are built, but as mentioned in Section 21 one could start
from simpler principles.

40. Leavitt algebras

The Thompson groups V,, , of Section 38.8 have faithful representa-
tions of as characteristic subgroups of certain rings with extra structure.
By this we mean that the images of the representations are invariant
under automorphisms of the rings that preserve the extra structure.
In particular, structure preserving isomorphisms between the rings in-
duce isomorphisms of the V,,,. The representations prove to be useful
since they ultimately allow us to classify the V,,, up to isomorphism.
Universalities arise that are parallel to those brought up in Section 18.
We give a bit more detail and background.

In Section 18, the algebra A of Jénsson-Tarski 1961 [119] is devel-
oped together with its connection to Thompson’s group V. The algebra
A is the free algebra on one variable in a variety V, where )V is universal
for the property that the free algebra in V on one variable is also free
on two variables. The group V' is isomorphic to Aut(A).

In a series of papers 1956-62 [136, 137, 138], Leavitt develops rings
with analogous properties to those of the Jonsson-Tarski algebras. For
an integer n > 1, the Leavitt ring L,, is universal for the property that
the free right module over L, of rank 1 is also free of rank n. That is,
L} and L" are isomorphic as L,-modules.

Pardo 2011 [168] shows that if the endomorphism ring M, (L,,) of the
free right module over L,, of rank r is endowed with a certain involution
and partial order, then the Thompson group V,,, is isomorphic to a
characteristic subgroup of M,(L,). The notation M,(L,) reflects that
it is the ring of r x r matrices over L,,. It follows that an order and
involution preserving isomorphism from M, (L,) to M,/(L,/) induces
an isomorphism from V,,, to V,/ .

Abrams-Anh-Pardo 2008 [1] finds sufficient conditions for the exis-
tence of isomorphisms between some pairs of the M,.(L,,), and in [168],
this result is enhanced to give sufficient conditions for more pairs of
the M,(L,). When applied to the characteristic subgroups V,,,, this
shows that the criteria from Higman 1974 [107] that are necessary for
isomorphisms between the V,, , to exist are also sufficient. This gives a

IThis chapter is not complete. More material will be added in the future.
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complete classifications of the isomorphisms types of the M,(L,) and
of the V,, .

Dicks-Martinez-Pérez 2014 [58] reproves and extends the results of
[1] and [168]. The extensions cover groups in the Thompson family
that we have not yet discussed in Chapter 6. We will not cover the ex-
tensions here, but will use techniques from [58] to keep track of certain
details.

In this section, we describe the rings L, and their generalizations
to algebras Li(1,n) over an arbitrary field k. The ring L, can be
thought of as Lz(1,n). In Section 40.4 we derive a characterization
of the subgroup of M, (L,) that is isomorphic to V,,,. What we show
is is minutely more general than what is shown in [168] and [58] in
that we only need to assume the preservation of the partial order on
M,.(L,) and not the involution. This change is mostly cosmetic since
we continue to work with the involution, and the amount of checking
that is eliminated is negligible.

In Section 41, we derive the results of [1] and [168] following [58]
and refer the reader to [58] for the generalization to other Thompson
groups. Unfortunately, the letters we choose for our subscripts agree
with the notation of Section 38.8 and other papers, and not with the
notation in [58].

40.1. The definition. Here we build the rings Lz(1,n) and the
corresponding algebras Ly (1,n) for a field k. We will use L,, as a short-
hand for Lz(1,n). Starting with Section 40.4, we will focus entirely on
the rings L, = Lz(1,n).

40.1.1. Conventions. All rings and algebras will have 1. For a ring
or algebra L, the elements of the free L-module L™ over L will be row
vectors with entries from L, and transformations from L™ to L™ will
be n X m matrices acting on the right. The endomorphism ring of L™
will be M, (L), the n x n matrices over L. We use I, for the n x n
identity matrix. For matrices A and B, we write A ® B for the block
A0

0B
40.1.2. The algebras. Fix an integer n > 1. We will derive what

must be true for an algebra L to have L' as a free right L-module of rank
1 isomorphic to L™ as a free right L-module of rank n. There must be a
transformation A thought of as a row matrix (yy, ..., y,) from L' to L™,
and a transformation B thought of as a column matrix (xq,...,z,)"
(with " indicating transpose) from L" to L' so that AB = I, and

matrix
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BA =1,. Expanding, we get the following n? + 1 relations.

(40.1) >y =1,
1

1, i=7,
(40.2) Ty, {0’ it

Given a field k, the Leavitt algebra Li(1,n) is the k-algebra gener-
ated by X = {z1,...,Zn,¥1,...,Yn} subject to the relations in (40.1)
and (40.2). One obtains the Leavitt ring L,, = Lz(1,n) similarly.

We will have need to refer often to the set M, of monomials in
Li(1,n). Endowed with the multiplication of Lg(1,n), the set M,
becomes a monoid. From Corollary 40.1.1 below, M, is the set of
all finite (possibly empty) words in the alphabet X modulo the rela-
tions in (40.2). Elements of L(1,n) are equivalence classes of k-linear
combinations of elements of M,,.

Note that if we define y7 = z; and 2} = y;, and if we extend *
to all monomials by (uv)* = v*u*, then we have (y;x;)* = y;x; and
(y;)* = x;y;, and the operation * preserves (40.1) and (40.2). So
extending * to all of of Ly(1,n) linearly gives an algebra involution on
Li(1,n). As an algebra with involution *, the sets X, = {v1,...,yn}
and X, = {x1,...,z,} each generate Lj(1,n).

If M is a matrix over a ring L, then M* will denote the x-transpose
of M. That iS, (M*)i,j = (Mz,])*

We say that an element v of Li(1,n) is unitary if vv* = 1 = v*v.
As a preview to the important Lemma 40.6 below, the reader can take
as an exercise to show that if o is a permutation on {1,...,n}, then
S Yiie = Y.y Yyl is unitary. Unitaries are units and the set of
unitaries forms a group under the ring multiplication. But over R
with n = 2 and 0 # a € R, if we set v; = a — y;z;, © € {1,2}, then
vi =, and we get vvf = a® + (1 — 2a)y,x;, and vivy = vy = a® — a.
So v; is a unit when a?> — @ = 1. The normal forms from Section 40.2
below will show that this gives examples of units that are not unitary.

40.2. Normal forms and positive elements. A normal form
for elements of a Leavitt algebra was given in Lemma 1 of 1956 [136].
We will introduce two normal forms, one general and one restricted, and
give some consequences. We will use Newman’s lemma from Appendix
A (Section 47) to establish their uniqueness. We introduce terminology
that will apply to both forms.

Every element of Ly (1,n), with n > 1 an integer and & a field or the
integers, is a finite k-linear sum of monomials from M,. We will say
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that a monomial uv* in M,, is standard (or is a standard monomial) to
mean that u and v are words (possibly empty) over X, = {y1,...,y,}.
If wv* is standard, then (uv*)* = vu* is standard as well.

Every monomial in Ly (1,n) can be represented as a standard mono-
mial since by (40.2) we can remove any appearance of z;y; as a subword
from a monomial without changing the element represented. If x;y;
with ¢ # j appears, then that summand can be replaced by 0. If x;y;
appears, then that appearance of x;y; can be replaced by 1. The reader
can use Newman’s lemma (Lemma 47.2) to verify that every element
of M,, is represented by a unique standard monomial.

The distributive law lets us combine summands having identical
monomials. If no such combinations are possible, then the sum will be
referred to as linearly reduced.

40.2.1. The general form. This form applies to Ly (1, n) for k a field
or the integers and will let us distinguish between elements. It is es-
sentially the form of [136]. Note that we can rewrite the relation (40.1)
as

n—I1
(40.3) YnTp = 1 — Z Uiy
1

This makes it reasonable to ask that there be no subword of the form
YnTy in any summand of our normal form. We can now claim the
following.

LEMMA 40.1. For k a field or the integers, each element of Li(1,n)
1s represented by a unique linearly reduced sum of standard monomials
in which there is no appearance of a subword of the form y,x,,.

Proor. We will introduce two types of reductions and argue that
the set of reductions is terminating and locally confluent. We work
with k-linear sums of monomials.

A reduction of Type I is an elimination, using (40.2), of an ap-
pearance of x;7; in a summand followed by a complete linear reduction
(combining of like terms). That this is well defined in spite of different
ways to linearly reduce follows from the associative law of addition.

A reduction of Type II is an elimination of an appearance of y,z,
using (40.3) in a summand followed by a complete linear reduction.
Again this is well defined.

To argue that random applications of the two types of reduction
must terminate in an irreducible, we use a complexity. Given a k-linear
sum of monomials, let S be the set of monomials (without coefficients)
used in the sum. That is, S eliminates duplication. We let ¢; be the
number of appearances of all symbols in S. We let ¢ be the number of
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appearances of the symbol y, in S. For example if S = {ya92, y1y271}
and n = 2, then ¢; =5 and ¢, = 3.

Since the starting sum might not be linearly reduced, we discuss
what changes occur to the complexity under reductions other than the
first reduction. A reduction of Type I lowers ¢; and either leaves ¢y
the same or reduces it. A reduction of Type II might raise ¢; since
new monomials are introduced, but it will lower ¢o. Thus pairs (¢, ¢2)
ordered lexicographically with ¢y the most significant form a complexity
that is always lowered by either type of reduction. This shows that
reductions are terminating.

If two reductions of Type I are available to a sum, then they must
be at disjoint sites. Checking that the two reductions can be combined
is complicated by the fact that each must end with a linear reduction.
A number of cases must be checked (including cases where the two sites
are in either the same monomial or in different monomials) and are left
to the reader. The same comment applies to two reductions of Type II
and reductions of different types at disjoint sites. We must consider a
sum in which a reduction of the two different types is available and they
affect overlapping sets of letters. This happens when either y,x,y,,
TnYnTny YnTnli, OF TiYnXy, © 7 n, appears in a summand.

If y,,x,y, appears in a monomial, then a reduction of Type I replaces
the triple with 3,. A reduction of Type II creates n monomials in
which the triple is replaced by 1y, = y, in one monomial and replaced
by yixiy, = 0,1 € {1,...,n — 1}, in the remaining n — 1 monomials,
and the results are seen to be the same. A similar argument covers the
appearance of x,y,x, in a monomial.

If y,x,y;, © # n, appears in a monomial, then a reduction of Type
I gives 0. A reduction of Type II produces n monomials with the
triple replaced by 1y; = y; in one monomial, replaced by y;z;y; in one
monomial with its coefficient negated, and replaced by y;z;y; = 0 in
the remaining n — 2 monomials. But by the previous paragraph the
triple y;x;y; in the negated monomial can be reduced to a single negated
monomial with y;x;y; replaced y;. Thus the ultimate sum is 0 whichever
reduction is applied first. A similar argument covers the appearance of
TilYnTy, 1 # n in a monomial.

Thus the process is locally confluent and uniqueness follows from
Newman’s lemma (Lemma 47.2). O

The following corollaries apply to Li(1,n) for n > 1 and k a field
or the integers, and to the submonoid M,, where k is not relevant.
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COROLLARY 40.1.1. The monoid M,, is presented with generators
X=Az1,...,2n,y1,...,Yn} and relations (40.2). The standard mono-
mials give a set of normal forms for the elements of M,,. Different
standard monomials represent different elements of M,, and Li(1,n).

Corollary 40.1.1 makes M,, isomorphic to the polycyclic monoid
generated by X, since we can define the polycylic monoid generated
by X, to be the monoid generated by X, U X, subject to the relations
(40.2). For example, see Section 7 of Birget 2004 [16]. The polycyclic
monoids were mentioned in the end notes (Section 21) of Chapter 3.
In Section 40.4.2, we will use the actions of the polycyclic monoids on
Cantor sets.

COROLLARY 40.1.2. If u and v are words over X, then v*u is 0 if
and only if neither u nor v is a prefix of the other. If in addition, u and
v have the same length, then v*u =1 if u = v and v*u = 0 otherwise.

40.2.2. The restricted form. An alternate normal form in a restricted
setting can be based on (40.1) and (40.2). The restricted setting is
specified in the statement of the next lemma.

LEMMA 40.2. In L, = Lz(1,n) any element that can be represented
by a sum of monomials from M, with no negative coefficients can be
represented by a unique linearly reduced sum of standard monomials
with no negative coefficients so that no set S of summands is of the
form S = {cu(yx;)v* | 1 < i < n} with u and v words over X, =
{y1,.- - yn} and 0 < ¢; € Z.

Note that appearances of y,x, are allowed in this form.

PROOF. Again we appeal to Newman’s lemma. The outline of the
argument is similar to that of Lemma 40.1 and we leave many details
to the reader.

As in Lemma 40.1, a reduction of Type I is an elimination using
(40.2) of an appearance of z;y; in a summand followed by a complete
linear reduction (combining of like terms).

A reduction of Type III starts with a set {cuy;x;0* | 1 <1 < n},
¢; > 0, of summands as in the statement of the lemma. With d the
minimum value of the ¢;, the reduction uses (40.1) to replace the sum

> Ciuyiziv™ by
duv + Z(C’L — d)uy;x;v*
followed by a complete linear reduction.

Showing that random applications of the two types of reductions
must terminate is easier than in Lemma 40.1. The argument that the
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reductions are locally terminating is similar to the argument in Lemma
40.1 and is left to the reader. The claim follows from Newman’s lemma
(Lemma 47.2). O

This has an important corollary.

COROLLARY 40.2.1. The subset of L,, = Lz(1,n) consisting of those
elements representable by a sum of standard monomials with no nega-
tive coefficients is closed under addition and multiplication and is thus
a subsemiring of L,,. This subset is also closed under *.

Proor. Multiplication, addition and the reductions used to get the
form of Lemma 40.2 introduce no negative coefficients. The last claim
is immediate. U

40.2.3. Positive elements. The partial orders on the rings, modules
and their endomorphisms will be defined by knowing the positive ele-
ments. All notions of positivity will have Corollary 40.2.1 as a basis.

In the ring L, = Lz(1,n), let PL, be the set of all elements other
than 0 that can be represented by a sum of standard monomials with
no negative coefficients. We refer to PL, as the positive elements of
L, and define < on L, by a < g if  — « € PL,,. The corresponding
< is a partial order on L, by Corollary 40.2.1.

A vector or matrix over L, will be positive if it is not zero and all
its non-zero entries are positive. We denote the positives in M, (L,,) by
PM,(L,). From Corollary 40.2.1, we know that products and sums of
positive matrices over L, are positive, and that if M is a p X ¢ positive
matrix, then (PLP)M C PL%. Also if A and B are positive, so is
A® B.

We extend the notion of unitaries from L, to matrices over L,
and say that a p x ¢ matrix M over L,, is unitary if MM* = I, and
M*M =1,. If M is a positive matrix, then M* is also positive. We
use PUM,(L,,) to denote the set of positive unitaries in M, (L,,).

Unitaries are units, and positive unitaries have positive inverses,

but
11\ _(1-1
01 0 1
shows that not all positive units have positive inverses. We will show
in Section 40.4.3 that PUM,(L,) equals the set of positive units of
M, (L,,) with positive inverses.
To set the tone for Theorem 40.10, the reader can verify that those

A € GL(n,Z) where both A and A~! have no negative entries are
exactly the permutation matrices (defined below before Lemma 40.6).
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40.3. Ideals. We show that there are very few 2-sided ideals.

PropoSITION 40.3. If k is a field, then Lg(1,n) is simple. The
only proper quotients of Lz(1,n) are Z/rZ.

The bulk of the work in proving the proposition is in the following
lemma. The wording is motivated by Theorem 1.13 of [51].

LEMMA 40.4. Let k be a field or the integers, and let ¥ be a k-linear
sum of standard monomials in Lx(1,n) in the normal form of Lemma
40.1. Let j € Z be greater than the length of any of the monomials
(ignoring the coefficient) used in 3. If cuv* with ¢ # 0 and uwv* standard
is a term in X, then (uy2y)*S(vy2y,) = c.

PrOOF OF PROPOSITION 40.3. For a non-zero ideal I, all the co-
efficients of summands of elements of I expressed in the form of Lemma
40.1 are elements of I. If the scalars are a field, then these coefficients
are invertible, so 1 € I. If the scalars are the integers, then the set of
scalars in [ is an ideal rZ of Z C Lz(1,n) that generates I. O

PROOF OF LEMMA 40.4. Let X, cuv*, and j be as in the statement
of the lemma.

A summand of u*Xv is u*(cuv*)v = c(u*uv*v) = c. If dst* with st*
standard is a summand in 3 different from cuv*, we consider u*(dst*)v.
If u*(dst*)v = d(u*st*v) = d, then checking cases and using Corollary
40.1.2 we see that dst* = duv* which is not possible by our assumptions
on . So c is the constant term of v*¥v. Returning to u*(dst*)v, and
again checking cases, we see that u*(dst*)v = def* # 0 with e and
f non-empty words over X, can only occur if |s| > |u| and [t| > |v|.
Since v and v cannot both end in y,, we see that e and f cannot both
end in y,.

Let ¥ = u*¥v. We know that ¢ is the constant term of ', and
we know that 27 is greater than the length of any of the monomials
used in Y. One summand of 2% Y/y? is 2% cy? = c. We argue that all
other summands of 2%y are zero or are of a very restrictive form.

Consider dst* with st* standard that is a summand of 3’ different
from c. Now dz? st*y? is zero unless both s and ¢ are proper (by the
choice of j) prefixes of y27. From a remark above, we cannot have both
s and ¢ non-empty and proper prefixes of y*. Thus dx?st*y? = 0
unless the dst* is of the form dy;" or dz]' for some m # 0, in which
case dr? st*y? is also of the form dy™ or dx™ for some m # 0.

Now X" = 2% %/y* has the form ¢ plus summands of the form dy™
or dx]" for various values of m # 0. This gives x;>"y; = c. O
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COROLLARY 40.4.1. If k is a field, then a homomorphism with do-
main Li(1,n) is trivial or a monomorphism. A homomorphism with
domain Lz(1,n) is a monomorphism if its image is infinite.

40.4. Two representations and a characterization. In this
section we work with the Leavitt ring L, = Lz(1,n). We wish to
prove that V,,, has a faithful representation into M, (L, ) whose image
is exactly PUM,(L,). Building a representation whose image is con-
tained in PUM,.(L,,) is reasonably straightforward, and will be done in
two steps. The first step will be to build a representation of V,,; into
L, = M;(Ly,).

To help characterize the image of the full representaion of V,,, into
M, (L,), we will also build a representation of M, (L,,) into the ring of
endomorphisms of C'(r¢&,,, Z), the abelian group of continuous functions
from r copies r¢&,, of the n-ary Cantor set &€, to Z. Here and in the rest
of this discussion, elements of €, will be viewed as infnite words over
X,. To save typing, we use K, to denote C(&,,Z), and we note that
C(r¢,,Z) is isomorphic to K. Since V,,, already acts on r&,, there is
an induced action of V,, . on K], and this will guide the representation
of M,(Ly,).

To keep the actions parallel to each other we will be careful about
which sides the actions are on. Since we have chosen to have V,,, to
act on r copies of the n-ary Cantor set r&€, on the right, the induced
action of V,, . on K] will be on the left. To be consistent, the elements
in M,.(L,) will also act on the left.

40.4.1. Representing V,, .. Before tackling V,, ,, we look at V,, ;.

We say that U is a prefix set for X, if every infinite word in the
alphabet X, has a unique prefix in U. We order X, using the order of
the subscripts of the y;, and prefix sets inherit the prefix order that is
derived from the order on X,. Using this order, we regard U as a row
vector and U* as a column vector so that if |U| = d, then UU* is a
1 x 1 matrix and U*U is an d x d matrix. We have the following.

LEMMA 40.5. If U is a prefiz set for X, with d elements, then
UU* =1, and U*U =1,.

PROOF. For the first equality, we note that U = X, is a prefix set
for X, and the equality holds in this case by (40.1). Every prefix set is
obtained from X, by a sequence of n-ary splittings where U’ is obtained
from U by an n-ary splitting at a given u € U if u € U is replaced by
{uy; | yi € X, }. The equality follows easily by induction.

For the second equality, we note that since U is a prefix set, if u # v
in U, then neither u nor v is a prefix of the other. The equality follows
from Corollary 40.1.2. U
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We now look at V,,;. Let (U,0,V) be given with U and V prefix
sets for X, and 0 : U — V a bijection. Using the prefix orders on
U and V, the bijecttion o can be also be regarded as a bijection on
{1,...,d} with d = |U| = |V| so that v, = (u;)0.

Let M, be the d x d permutation matrix with entries m, ; that cor-
responds to o in that m; ; = 1if j = i0 and is otherwise 0. The inverse
of M, is the (conjugate) transpose M*. Then UM,V* = > wv}. We
will refer to UM,V* as the element of L, corresponding to (U,o,V).
The element corresponding to (V, o1, U) is VM, U* = (UM, V*)*.

LEMMA 40.6. (1) Let (U,o0,V) be given with U and V prefix sets
for Xy and o : U — V' a bijection. Then UM,V* € L, is unitary.

(1I) If we view the underlying n-ary Cantor set acted on by V,, 1 as
words over X, and we take f € V,, 1 represented by (U,0,V) as in (1)
to O(f) = UM,V*, then 0 is a well defined homomorphic embedding
from V,, 1 into the positive unitaries of L,,.

ProOF. (I) Let d = |U| = |V|. We have
UM, V*(UM,V*)* = UM, V*VMU* = UL,U* = UU* =1,

and similarly for (UM,V*)*UM,V. This argument is slick, but it is
also worth writing out that since V' is a prefix set, we have

(40.4) E U7 E Vjoll; = E E UV, VjgU; = 5 wu; =1
i j i i

because v}, v, = 0 unless i = j.

(IT) Invariance of #(f) under n-ary splitting is straightforward by
noting that after a splitting that replaces some y; in U with the n-tuple
(Ysy1, YiY2, - - -, Yiyn) in U and a corresponding replacement of (y;)o in
V', the modified ¢’ will take y;y; to (y;)oy;, and near the end of the
calculation of (40.4), a sum of the form

> (i) (wi)* = viv;

j=1
will appear. That 6 is a homomorphism is immediate. It is an em-
bedding because V,,; has no normal subgroups other than possibly a
subgroup of index 2. O

To get a representation of V,, ., we modify the represention of V/, ;.
Let f € V,, berepresented by (U, 0, V') where U and V' are sequences of
words in X, of the same length d. The sequence U is the concatenation
of a sequence of r sequences (U, ..., U,) where each U; is a prefix set
for the n-ary Cantor set €, under the prefix order. Similarly V is the
concatenation of (Vi,..., V) of similar description. We do not require
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that for each 7, the length of U; is the same as that of V;. The bijection
o is then between sets of size d and is to be regarded as a bijection on
{1,...,d} so that we can overuse the letter o and write (u;)o = ;.

We let M, be the d x d permutation matrix for o. With each U;
and V; a row vector, welet My =U,®---®dU, and My, =ViH--- DV,
(see Section 40.1.1), and let My = MyM,(My)*. Each of My and
My is an r x d matrix, and My is an r X r matrix. We note that
MU(MU)* = Ir = Mv(Mv)* and (MU)*MU = Id = (MV)*MV As in
(40.4) we get

My(My)* = (MyMy(My)*)(My Mo (My)")*
= MyM,(My)* My (My)*(My)*
= MUMUId(MU)*(MU)*

— MyT(My)* =1,

and similarly (M;)*M; = I,. Invariance under matched splittings is as
in Lemma 40.6 and we get the following. The embedding comes from
the fact that the image has more than two elements.

PROPOSITION 40.7. Sending f € V,, to 0(f) = My in M,(L,)
makes 0 a homomorphic embedding into PUM,(Ly,,).

40.4.2. Representing M,(L,). We build the representation in steps,
and we start with monomials. Monomials will first act by partial bi-
jections on €, on the right, and then the action will be linearized to
act on K, on the left.

Because of our choices about the sides of our actions, we will have
to twist unnaturally so as to make the actions cooperate naturally
with the algebra. Doing so will make clear that the actions do in fact
commute with the multiplication.

Elements of M,, are words of the form uv* where u and v are finite
words over X,. Recall that elements of &, are viewed as infinite words
over X,. Given a standard monomial uv* € M,, in L,, and a word w
in X7, we set

vw’ w = uw'
40.5 ") = ' ’
( ) w(uv?) {undeﬁned, otherwise.

That is, uv* takes u€, rigidly to v€, and is undefined on the comple-
ment of u®,.

We can relate (40.5) to the algebra of L,, by contorting things. In
parallel to the view of €, as words in X;’, we can also regard &, as
the set of infinite words over X, = {xy,...,z,} = {vy},...,y } written
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from right to left (i.e., backwards). We “equate” w € X}’ written left
to right with w* € X% written right to left. Now (w')*u*uv* = (w')*v*.

Note that the set of partially defined transformations u€, — v&,
that are rigid (uo — va for all o € €,) is closed under composition
if we add an element that is undefined everywhere since two cones are
either disjoint or nested. The set of such transformations is thus a
symmetric inverse semigroup (see Lawson [129] or [133]).

If we specialize the definition to y; = y;1 and z; = 1x;, we get

w(z;) = (yiw),

(40.6) w', w =y,
w(y;) = .
undefined, otherwise.

If we view €, as the ends of the complete n-ary tree drawn with the
root at the top, then x; “lowers” &€, to the cone y;&,, and y; “raises”
the cone y;€, to the entire Cantor set. These are not elements of of
the Thompson monoid .# of Section 16, but they are elements of the
monoid invM,, 1 of Birget 2009 [17].

Using (w')*u*uv* = (w')*v* from above, or simply checking cases,
it is seen that the action commutes with composition in M,,. From
(40.6) the action preserves the relations (40.2). From Corollary 40.1.1,
we have a homomorphism from M, to the partial symmetries of €,
and it is clear from the definition that this is injective.

To fulfill the status of M,, as an abstract inverse semigroup (every
a has a unique ¢! for which aa=a = a and a~taa™' = a™!) we put
(uv*)* = vu* in the role of (uv*)~!. Its status as an inverse semigroup
gives certain early facts which are also obvious from the representation
as a symmetric inverse semigroup. Idempotents are all of the form
uu*, and idempotents commute. The idempotents are in one-to-one
correspondence with the cones in €,,. That M,, is an (abstract) inverse
semigroup and the facts just given can also be derived as an interesting
exercise directly from the presentation of Corollary 40.1.1.

To obtain an action of M,, on K,, we replace “undefined” by 0.
Given a standard monomial uv* in M,,, a function f : €, — Z, and
w € €,, we set

(v f, w=uw'

(40.7) w((wv”)f) = (w(w"))f = {

0, otherwise.

Thinking of K,, as a Z-module, the element uu* is a projection of
K, to the submodule of elements in K,, whose support is in the cone
u&,.
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We extend the action of M,, on K, defined by (40.7) to L, linearly.
This action cooperates with addition. The action cooperates with mul-
tiplication on M,,, and the only further check needed is to verify that
the relation (40.1) is preserved.

The Cantor set €, is the disjoint union of the cones in {y;&, | 1 <
i <n}. So K, is the direct sum

(40.8) K,~Y @&C(y€,.2),
=1

and the identity on K, is the sum of the projections of K, to the
C(y:i€,, Z). Since (y;x;f)w = w if w starts with y; and is 0 otherwise,
the y;x; are exactly these projections. This verifies that the relation
(40.1) is satisfied and we have a well defined representation of L, in
the endomorphism ring of K,. This is also straightforward to verify
formally and is left to the reader. Thus we have a homomorphism.

From Corollary 40.4.1, the homomorphism is a monomorphism if
its image is infinite. The integer j takes the constant function from
¢, to 1 to the constant function from €, to j. We have shown the
following.

PROPOSITION 40.8. The function based on (40.7) from the Leav-
itt ring L, = Lz(1,n) to End(K,), the endomorphisms of the group
of continuous functions from the Cantor set €, to the integers, is a
homomorphic embedding.

It is now straightfoward to define the representation of M, (L,). We
regard the r-tuples that form K] as r x 1 column matrices. The image
under an r x r matrix A € M,(L,) with (i, j)-entries A;; € L, of an
r-tuple (f;) in K is the r-tuple (g;) where

J

If some A; ; # 0 with ¢ # j is an entry in A, then from Proposition
40.8, thereis an f € K, with A; ; f # 0 and A cannot act as the identity
on the tuple in K whose only non-zero coordinate is f; = f. So any
A acting as the identity must be diagonal. Now Proposition 40.8 says
that an A acting as the identity is the identity matrix. We have shown
the following.

PROPOSITION 40.9. The action of M,(L,) on K| just defined gives
a homomorphic embedding of M,(L,,) in the endomorphisms of K.
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The composition of the representation of V,,, into Mp(L,) with the
action of M, (L,) on K gives the action of V},,, on K induced by the
action of V,,, on r&,. We have no particular use for this fact.

40.4.3. Characterizing the image. The following is a slight exten-
sion of Proposition 3.5 from [168].

THEOREM 40.10. The set of positive units in M,(L,) with positive
inverses equals the set PUM,.(L,) of positive unitaries in M,(L,). The
map 6 : V., — M,(L,) is a homomorphic embedding with respect to
the multiplication in M, (L,) whose image is PUM,(Ly,).

PROOF. The proof is mostly accounting. For positive A € M, (L,)
we keep track of how often prefixes and suffixes are used. We give the
idea first and precision after. For words u and v over X,, the count
row;(u) will be the number of times w is used in row i of A as the prefix
of a monomial uv*, and the count col;(v) will be the number of times
v* is used in column j of A as the suffix of a monomial uv*. We can
be more precise.

The (4, 7) entry A; j of A is an element ) c,u,vs with ¢, € Z, and
u, and v, words over X,. We let p; ;(u) = > ¢, with the sum taken
over all p where u, = u, and we let x; j(v) = > ¢, with the sum taken
over all p where vy = v*. Now

row;(u) = me(u), and

CrAaM 1. For positive, invertible A in M, (L,) with positive inverse,
and 7= {1,...,1} the following hold.

(I) For i € 7, every word u and v over X, has row;(u) € {0,1} and
colj(v) € {0,1}.

(II) For i € 7, the set {u | row;(u) = 1} is a prefic set for &,.

(II1) For j € 7, the set {v | col;(v) = 1} is a prefix set for &,.

PROOF OF CrAIM 1. We eliminate sources of failure of (I)—(III).
Note that the number of words u, v with row;(u) or col;(v) not zero is
finite. We focus on the fact that A must carry K] to itself bijectively.

If for some j € 7, the set V; = {v | col;(v) > 1} is not a prefix
set because some word in X}’ has no prefix in V;, then A cannot be
one-to-one by considering Af on an f # 0 with f; = 0 for ¢ # j and
fj supported on some v¢€, where no element of v€, has a prefix in Vj.
If for some i € 7, the set U; = {u | row;(u) > 1} is not a prefix set
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because some word in X}’ has no prefix in U;, then A cannot be onto by
noting that (Af); must always be zero on u€, for u where no element
of u€, has a prefix in Us.

We do not yet know that A~! = A*, but we can apply what we know
so far to A1, So we know that for f € K' regarded as a function from
7 to K,, every value of f makes a contribution somewhere to Af and
also to AL f.

We will use the constant function 1 from 7€, to 1 and concentrate
on the fact that AA~! has to take 1 to itself. From the remark just
made about Af and A~'f, we know that Al cannot have any value
greater than 1. From this we know that every entry A;; of A is a
linearly reduced sum of monomials of the form ) lu,vy. Secondly, if
row;(u) > 1 for some u € U;, then Al is greater than 1 on u€,. This
proves that part of (I) about the values row;(u). Lastly, if some U fails
to be a prefix set because there are u and « in U; with ' a prefix of u,
then A1 on u€, will also have value greater than 1. This proves (II).

If some col;(v) is greater than 1, then since all coeflicients in the A; ;
are 1, the suffix v* must show up in at least two monomials w;v* and
ugv*. Either these monomials are in the same A; ; and have u; # us, or
the monomials are in different rows of A and the two prefixes are from
different U;. In either case it follows from the fact that (II) is known
that the cones u, &, and u,€, are disjoint cones in r¢, whether they
are in the same copy of &€, or not. In this situation no Af can have
different values on these cones and A cannot be onto. This completes
the proof of (I).

The last case to consider is if some vy is a proper prefix of vy, with
both v; and vy in some V;. Then w;v] and uyv; are monomials in
entries in A. If vy = vyvs3, then let us = vj. Because (II) is known to
hold, we have that for all f, the values of Af on (uju3)€, must equal
the values of Af on us€,, and A cannot be onto. This completes the
proof of (IIT) and the claim. O

PrOOF OF THEOREM 40.10 (CONT.) From Proposition 40.7 we
know that 6(V},,) is contained in PUM,(L,,) which is then contained
in those positive, invertible elements of M, (L,) with positive inverses.
Now Claim 1 shows that every positive, invertible element of M, (L,,)
with positive inverse is in the image of #. This completes the proof. [J

41. Isomorphisms from Leavitt algebras

We continue to use L,, to denote the ring Lz(1,n).
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Theorems 38.29 and 38.30 of Section 38.8.1 show that if the groups
Vpr and Vs v are isomorphic, then n = n’ and ged(r, n—1) = ged(r', n'—
1). Our goal is to obtain a converse via the followng.

THEOREM 41.1. If n’ = n and ged(r,n — 1) = ged(r’',n — 1), then
there is an order preserving isomorphism of rings M,.(L,,) and M,.(L,).

From this we get the following.

THEOREM 41.2. Ifn’ = n and ged(r,n — 1) = ged(r’',n — 1), then
there is an isomorphism between V,,, and V,y as well as an isomor-
phism between V. and V' .

PRrRooOF. This follows from Theorem 41.1 and from Theorem 40.10

which represents the various V,,, as characteristic subgroups of the
M, (Ly). 0

In Section 38.8 it is mentioned that Theorem 7.5 of [107] gives that
if ¢ is a divisor of n, then V,,, and V,, ., are isomorphic. Note that this
is a consequence of Theorem 41.2 since if ¢|n, then ged(c,n — 1) = 1,
and ged(r,n — 1) = ged(er,n — 1) because they divide each other. A
case not covered by combining the result from [107] with Lemma 38.2,
but covered by Theorem 41.2, is the case n = 5, r = 1 and ' = 3. From
Lemma 38.2 we know Vj ; is isomorphic to all Vs, with r =1 (mod 4),
and V53 is isomorphic to all Vs, with » = 3 (mod 4). From Theorem
7.5 of [107] we can only learn that Vj, is isomorphic to V5. But
5 =1 (mod 4), so this information cannot combine the two classes.
But ged(3,5 — 1) = 1, and that V5 is isomorphic to V; 3 follows from
Theorem 41.2.

41.1. Reductions. Theorem 41.1 will be derived from the impor-
tant special case proven in [1] that assumes ged(r,n — 1) = 1. The
result in this case follows if it is proven that there is an order preserv-
ing isomorphism from M (L,,) to M,.(L,) for all  prime to n — 1. But
M, (L) is just the ring of 1 x 1 matrices over L,, and is order isomorphic
to the ring L,. So our special case is the following.

THEOREM 41.3. When ged(r,n — 1) = 1, there is an order pre-

serving ring isomorphism from L, to the ring of r X r matrices over
L,.

The proof of Theorem 41.3 will be the bulk of the effort. The proof
is aided by the fact that much is known about the ring L,,.

The reduction of Theorem 41.1 to Theorem 41.3 uses the following
two lemmas. The first is proven as Lemma 50.4 in the Appendix.
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LEMMA 41.4. Let a,b, s be integers with both a and b not zero and
with g = ged(a, s) = ged(b,s). Then some integer x prime to s is a
solution to ax = b (mod s).

Next is a parallel to Lemma 38.2.

LEMMA 41.5. Ifr =" (mod n—1), then there is an order preserv-
ing isomorphim of Ly,-modules between L7 and L7 and order preserving
isomorphism of rings between M,.(L,) and M, (L,). For all r, the Ly
modules LY are order isomorphic and all the rings M,(Ly) are order
1somorphic.

PROOF. The matrix A = (y1,...,¥y,) from Section 40.1 gives an
isomorphism from L! to L" and A* gives the reverse isomorphism.
Both A and A* are positive so the isomorphisms are order preserving.

The matrix I_; & A and its x-transpose give order preserving iso-
morphisms between L* and L=, Conjugations using these inverse
isomorphisms induce order preserving isomorphisms between My (L,)
and M (n—1)(Ly). The first sentence of the lemma follows by compos-
ing these isomorphisms for the various k. The second sentence follows
because 2 — 1 = 1. U

PROOF OF THEOREM 41.1 FROM THEOREM 41.3. We assume that
ged(r,n—1) = ged(r’,n—1). Lemma 41.4 gives a unit u in Z/(n—1)Z
with 7 = ru (mod n — 1). With ged(u,n — 1) = 1, we have M, (L,)
is order isomorphic to M,(M,(L,)) where elements of the latter are
regarded as block matrices with u X w matrices as the blocks. The
latter is order isomorphic to M,,(L,) which by Lemma 41.5 is order
isomorphic to M,/ (Ly,). O

41.2. The proof of Theorem 41.3. From this point ged(r,n —
1) = 1. We can make other restrictions. From the first conclusion of
Lemma 41.5, we can take r as large as we like, and we assume r > n.
From the second conclusion of Lemma 41.5, we can assume n > 3.
These assumptions will see repeated use.

We must build an order preserving isomorphism. In spite of the
fact that we are not forced to use the involution *, we will use it. It
would seem crippling not to. As a ring with involution, L,, is generated
by Xy = {v1,...,yn}. We must find matrices Y1,...,Y,, in M,(L,) to
be the images of the y;. To show that y; — Y, extends to a ring
homomorphism 7, we must show that the Y; satisfy the relations (40.1)
and (40.2). To show that 7 is injective, Proposition 40.3 tells us that it
suffices to show that the image is not finite. To show that 7 is surjective,
we must show that all the matrices e; ; and yie; ; are in the image of 7
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where e; ; is the r X r matrix having as its only non-zero entry a 1 in
position (7, j). To show that 7 is an isomorphism of ordered structures,
we need to show that it restricts to a bijection on the positive elements
of the domain and range.

Difficulties arise from the semi-predictable relation between n and
r. To set the tone for what follows, we quote [58] where it is remarked
that the beautiful result from [1] “shows that two naturally defined
rings are isomorphic without giving a natural reason, and there may
not be one.” What follows in the rest of this section is a carefully
crafted mechanism that produces the desired isomorphism.

41.2.1. Bookkeeping. Deriving all the e; ; from the Y; makes use of
a semi-regular pattern set up modulo r. We define 7 : Z — Z by

i+mn, i=0 (modr),
(41.1) imr=<ci+(n—2), i=1 (modr),
i+ (n—1), otherwise.

The pattern established by 7 is that all integer values are increased
by n — 1, except the pairs (kr, kr + 1) which are increased by n — 1 and
then interchanged. Thus 7 is a bijection.

In the following, there will be constant reference to intervals of
integers. We have little reason to discuss intervals of real numbers.
So for the rests of this argument, we will use [i,j] to denote the set
{keZ|i<k<j}

LEMMA 41.6. The following are true about the mapping .

(1) An interval of n — 1 consecutive integers starting with k is a set
of orbit representatives of w if and only if k Z1 (mod ).

(II) The r—1 consecutive, disjoint sets of n—1 consecutive integers
starting at n are all sets of orbit representatives of .

PRrOOF. (I) For one direction, let J = [k, k + (n — 2)] with k # 1
(mod 7). The only integers increased by 7 by less than n — 1 are those
equivalent to 1 modulo r. So J does not duplicate any orbits. No
integer is increased by more than n so J U {k — 1}, which includes
(k—1) # 0 (mod r), has a representative for every orbit. But now
(k—1)m < (k—1)4(n—1) which lies in J. So every orbit is represented
in J. The other direction is clear.

(IT) The least elements of the intervals described form an arithmetic
sequence of constant difference n — 1. Since ged(r,n — 1) = 1, the
sequence cycles through the residues modulo r. Since n is the integer
immediately following 1 in the sequence, all of n and the next r — 2
entries of the sequence are not equivalent to 1 modulo r. The claim
now follows from (I). O
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For j € [1,7 —1] let J; be the j-th set of consecutive n — 1 integers
described in (II) of Lemma 41.6 with j < k giving J; < Jj. Specifically
Ji=n+(G-1)(n—1),n+j(n—1)—1], and i < j gives J;NJ; = 0. By
(I) of Lemma 41.6, [2,n] and each J;, j € [1,r — 1] contains a unique
representative for every orbit of w. For s € [2,7] and j € [1,7 — 1], let
s - j be the unique element of Z in J; in the m-orbit of s.

41.2.2. The key cycle. The sequence with constant difference (n—1)
used in the proof of (II) of Lemma 41.6 will show up repeatedly, in
reverse, modulo r as i +— i — (n — 1) (mod r), on the interval [1,r].
Our assumptions that 2 < n < r give that 1 < n—-1 < n < r
are four different elements of [1,7] and so the transitions n — 1 and
(n — 1) + r involve no common elements. If inductions are done by
use of the cycle, and one or both of these transitions are not available
for the induction, then one or both of “true for 1”7 and “true for r” will
need to be assumed. The diagram below will help visualize the points
made about the cycle.

r — —> e —> —>T7
(41.2) T j

The use of representatives of Z/rZ in [1,7] is so frequent, that we will
use the notation a[modr| to indicate the element in [1,7] equivalent
to a modulo r.

The key aspect of the permuation 7 is that 7, modulo r, is essen-
tially the inverse of the action i +— ¢ — (n — 1) [modr] on [1,7], but
it interchanges the “targets” of r and 1 in the direction travelled by
7. This it interchanges the targets of n — 1 and n under the cycle of
i = i — (n—1)[modr] on [1,7]. Thus 7 breaks the cycle into two
orbits which are the top and bottom lines of (41.2).

41.2.3. Building the homomorphism. Our task is to define n matri-
ces in M,(L,). All of the entries will be 0 except that each column of
each matrix will have a single non-zero entry. Of these rn entries r — 2
entries will be 1, n entries will be the elements y; through y,,, one entry
will be y !, and the remaining rn — (r —2) =1 —n = (r — 1)(n — 1)
entries will be defined with the help of the behavior of s - j.

We let A be the row vector (y1,...,¥y,), L._2 be the (r —2) x (r—2)
identity matrix, and Z be the row vector

(Z'/‘-‘F’Vl—la Zr+n, .. Zrn)

containing (r — 1)(n — 1) + 1 entries where where

_ .1 _ g1
“r4n—1 = Y1 and Zr4(sj) — Y1 Ys:
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The strange indexing is to place z; in column ¢ of the matrix Y defined
below.

No two z; have been defined to be the same element in L,. The
elements of L, defined as some z; include y;~' and all yly, for all
(p,q) € [0,7 — 2] x [2,n]. The underlyingn set of each of A and Z is a
prefix set for X .

We let y7 = x; from Section 40.1, and for a matrix M, we let M*
be the *-transpose of M. From Lemma 40.5, we have all of AA* =1,
A*A=1,, 772" =1 ,and Z*Z =1, with k = (r — 1)(n — 1) + 1. Now
the r X rn matrix

A 0 0
Y=AI, o®dZ=|01_0
0 0 Z
satisfies
(41.3) YY*=1, and Y'Y =1,,.

The matrix Y can be given the block structure (Yl Yy - Yn>

where each Y; is an r x r matrix. We illustrate Y; and Y5 below since
they differ greatly from the other Y;, and the nature of their internal
structures will be used repeatedly.

H[vi--¥% 00 ---00][0 0
: 01 ---00 : :
r—nd| 00 - 00]]: Dgr ot
: 00 ---10 : :
o ---000 01 0 < e o 0]
4 O “ .. O 10.000.0\
: : 01 --- 00 :
00 -. 00 n—2
oA oo 10
: : 00 --010 -0}/
\_0 0_ _00"'00%"'%_}1
Y) Y,
(s=r+n-—1)
(t =2r)

The relations in (41.3) are a restatement of the relations in (40.1)
and (40.2), and they verify that sending y; in L, to Y; in M,(L,)
extends to a ring homomorphism 7. In particular Y ,_, Y;Y* =1,.

Each Y; has infinite order in the additive structure and so the image
of the homomorphism is infinite. As remarked, it follows from Propo-
sition 40.3 that 7 is injective. The Y; and Y;* are all positive (are in

)
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PM,(L,)) and so n takes the positives in L,, (those in P) into the pos-
itives in M, (L,). To prove that 7 is an isomorphism of ordered rings,
we need to prove that n is surjective and carries P onto PM,(L,). It
suffices to prove the latter.

41.2.4. On surjectivity. We will show that all the e, ; and all yxe; ;
are in the image of P under 7. This will complete the proof of Theorem
41.3.

Let S = n(P). We know S C PM,(L,). We show PM,(L,) C S
by building elements of S as products and sums of the ¥; and Y;*. As
an aid we let O be the k x k zero matrix, and for 1 < i < r we define

E'=1&0,_;, and
E._i=0,;@L, so
IT,:EW:EWOIEW—’—EWZ

The order of acquisition in S will be first the E* and E;, then the
eiq, and then the e; ;. The yie; ; will be picked up toward the end.

41.2.5. The FE;. We start with one easy item and two special cases
of what follows.

L =) VY7 es,
k=1
(41.4) Er~=Y vy e S,

zn: V.Y, €S
k=2

Erifny =1 — B~

For part of an induction, we note that if 1 <1i < (n — 2), then

Ei+r—(n—1) _ Er—(n—l) + ngElY; _
VIV +YLE'YS €S ifE' €S, and
Ei+7‘*(n71) =1 - gl =
41.5 , -
k=3

VLEYS +Y WY €S ifE €8,
k=3
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If n <i<r, then
E-D = ViEY; € S ifE' € S, and

Ei—(n—l) =1 — EH_(n_l) =
(41.6) .
VEY] +) ViYy €S ifE €.

k=2

Thus for all values of ¢ from 1 through r except i = (n — 1), if
FE'€ S, then F € S with j =i — (n—1) (mod r). Similary with the
same restrictions on 4, if E; € S, then E; € S with j =i — (n — 1)
(mod 7). The cycle (41.2) applies here with the transition (n — 1) — r
not available. But E" is in S, and while E,. = O,. is not relevant, the
next element in the cycle E,;(,—1) is in S. So inductively, all E* for
1<i<randall B;forl1 <i<rarein S.

41.2.6. The e;;. We start work on the e;; by noting that e;; =
FE' and e,, = E,_; are both in S. We have the conjugation result
eji€iiei; = ejj, and more generally we get M ~'e;;M = e;; if the only
non-zero entry in row ¢ and in column j of M is a 1 in position (3, j).

Using Y5" as M, we have this type of 1 in position (¢, i+r—(n—1)) for
i € [1,n—2], and using Y* as M, we have this in position (i,i—(n—1))
for i € [n+ 1,r]. So the conjugations Yie;;Y7" and Yae; ;Y5 both give
e;; with j =i — (n—1) (mod r) in the stated ranges.

The cycle (41.2) applies with both restrictions mentioned in Para-
graph 41.2.2 effect. Since we know e;; and e,, are already in .S, we
get alle;; € Sforall 1 <i<r.

41.2.7. The e; . If m;; denotes the matrix that agrees with a ma-
trix M on position (¢,j) and is zero elsewhere, then e;;Me;; = m; ;.
As pointed out in Paragraphs 41.2.6, we see that in this way S obtains
all €;1r—(n—1) fori € [1,n—2] from Y5 and all €;;_(,—1) for i € [n+41,7]
from Y7*. We will also exploit the fact that this puts some of the yye; ;
in S as listed below.

Ys€1,s from Y;

Ts€s,1 from Y|

Y1 erna from Y,
(4.7) 2 en 1, from Y

(U] Ys)er () [ mod +] from some Y;

(xsx{_l)e(s-j)[mod rlr from some Y*

With e; je;, = e, we get all e;; (and e;; by inversion) for pairs
(,7) in the cycle (41.2) not separated by the transitions n +— 1 and
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n — 1+ r. These are all pairs in an orbit of 7 modulo » — 1 in [1, 7],
and thus in either the top or the bottom lines of (41.2). We only need
to bridge one of the gaps between the two lines, and it will suffice to
prove that e;, is in S.

Expanding the statement that ZZ* =1, gives that

r—1_r— j—1 j—
L=y 1.1'1 t+ Z Z y{ ysxsmjl !

j€[l,r—1] s€[2,n]

holds in L,,, and

(41.8) e = e+ D> D (Wl ] ey

jE€[1,r—1] s€[2,n]

holds in M, (L,).
We can factor the terms in (41.8) using (yp€i;)(Ye€ik) = (Yp¥q)€ik,
and using the elements of S listed in (41.7). We can rewrite (41.8) as

e, = (ylel,l)Til(el,nfl)(xgilenfl,”

- 1
+ Z Z (ylel,l)j 1<y361,s)(€s,(s-j)[mod T])(ajsle €(s-j) [ mod r],r)-

jE€[1,r—1] s€[2,n]

This puts e;, in S since each (yge; ;) and (zie; ;) that is used comes
from (41.7) and is in S, and e1,-1 and e (s.j)[mod -] have their two
coordinates in the same row of (41.2) and so are in S.

41.2.8. The yie; ;. We get yre; ; as €;1(yre1k)ex,;-

This completes the proof of Theorem 41.3, as well as Theorems 41.1
and 41.2.

42. End notes

The figure at the beginning of the Chapter gives a 3-D view of an
example at the top of Page 207 in [58] that is related to one of the
variants in the Thompson group family not yet covered in Chapter 6.

The comments made in the first few paragraphs of Section 41.2
imply that the L,-modules L? and L* might not be isomorphic for
1 <75 <k < n. In fact this is true and Theorem 41.1 gives an
example of non-isomorphic free R-modules for a common ring R but
which have isomorphic endomorphism rings. Theorem 41.1 does not
give the first examples, and we will not prove that L7 and L* are not
isomorphic with 7 and k as stated. For other examples see Abrams
1997 [2]. For the non-isomorphism, one computes the monoid V(L,,)
of the projective L,-modules. See Chapter 3 of Abrams-Ara-Molina
2017 [3] for a discussion in a more general setting, and Example 3.2.6
in particular. The algebra L;(1,n) is there denoted Ly (R,,).
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Abrams-Anh-Pardo 2008 [1] has the comment that Li(1,n) can be
viewed as operators on an infinite dimensional k-vector space and given
the operator norm when k is the complex numbers C. The completion
of Lc(1,n) is the Cuntz algebra O,,. Representations of V;,; into O,
are found in Nekrashevych 2004 [159]. Simultaneous with [159] are rep-
resentations of V' into Ly by Briget 2004 [16]. The paper Hughes 2012
[114] (with preprint from 2006) does representations in more general
settings.

The notation Ly (R,) of [3] reflects that the algebra is based on paths
obtained from the directed graph R, (the n-leaved rose) consiting of
1 vertex and n labeled edges. If the labels are y; through y,, then
the paths are given by words over X,. If other graphs are used, then
other sets of words are obtained. This quickly splits into several topics.
The operations of adding and deleting letters from the beginnings of
the words leads to algebras called the Leavitt path algebras (see [3])
which can also be obtained directly from the graphs. The operation of
deleting the first letters of infinite words defined by the graphs leads to
modifications of the full shifts called shifts of finite type. These in turn
lead to topological full groups which are variations of the V,,,. [151].
If all of this is lifted to the analytic setting of the Cuntz algebras one
obtains variations of the Cuntz algebras known as the Cuntz-Krieger
algebras [52]. None of these topics will be addressed in this edition.
No promises will be maded about future editions.
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43. Introduction

'This chapter is just a bit more than a stub. It contains one key
calculation and one small example. Further expansion might come
later.

This chapter looks at geometric aspects of the Cayley graph of the
Thompson group F. To have geometry, we have to have a metric.
Section 44 tells how to compute the word metric in F. Section 45 gives
one observation about F'.

DEFINITION 43.1. If G is a group with generating set X, then
the Cayley graph I'(G, X) of G with respect to X is a directed graph
(digraph) with vertex set G and for each g € G and x € X there is an
edge (g, gz) directed from g to gx. We think of the edge as labeled by
x and if 27! is in X, then there is a separate edge labeled 21 directed
from gx to g. In particular there is no requirement that X be closed
under inverses. If z = z~!, then we insist that there be two directed
edges labeled = between g and gz, with one directed one way, and the
other the other. If G and X are understood, the Cayley graph will
simply be denoted T'.

IThis chapter is not complete. More material will be added in the future.

267
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The definition should make it clear that multiplication of vertices
on the left by an element of GG is a graph isomorphism that fixes no
vertex and no edge. Taken over all elements of GG, this gives a free left
action of GG on I' by graph isomorphisms.

Multiplying on the right is not an action but can be interpreted. A
path in I' from one vertex in I' to another gives a word in X U X!
according to the following rules. If the path traverses an edge in a
direction that agrees with the direction of the edge, then the label of
the edge is a contribution to the word. Otherwise the inverse of the
label of the edge is a contribution to the word. The word associated to
the path is the string of contributions listed in the order of the edges
of the path. If w is the word given by a path from some f € G to some
g € G, then g = fw. Thus multiplying a vertex in I' on the right by a
word in X UX ! drags the vertex along the path dictated by the word.

We get metric information about a Cayley graph from the following.

DEFINITION 43.2. Given a group G and generating set X, the norm
llg]| of an element g € G is the length of the shortest word in X U X!
that represents g. Given f and ¢ in G, the distance d(f, g) from f to

gis|lf7gll

It is immediate that d is a metric on GG, and further that if every
edge in T'(G, X) is assigned length 1, then d(f,g) is the length of the
shortest path in I'(G, X) from f to g. Thus d extends easily to a metric
on I'(G, X), giving the Cayley graph some geometric structure. To
obtain information about the structure, it helps to be able to compute
the metric. For F' there is an algorithm to do so. We address this next.

44. Computing length in F'

We derive an effective algorithm to compute || f|| for an f € F using
the generating set A = {zF', zF'}. We describe the setting that we will
use.

44.1. Forest pairs. We will use the fact from Section 11.6 that
elements of F' can be represented by pairs of finitary forests, and also
pairs of finite forests. Let f € F be represented as f = ®O~! where ®
and © are finitary forests. Each of ® and © ends in a tail of finite trees,
and it suffices to remember an initial segment of the sequence of trees
in each of ® and © that includes all the non-trivial trees. We will keep
enough trees in each of ® and © so that the number of leaves retained
in ® equals the number of leaves retained in ©. At this point we are
dealing with structures that appear in the groupoid P* from Section
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24 whose properties are laid out in Corollary 24.3.1. Multiplication
and reduction to a minimal pair is discussed in Section 24.1.

We will illustrate finite forest pairs as in Section 24.1 by flippling
the second forest horizontally and stacking the first forest over the
second, matching the leaves. Two examples are shown in (24.3) and
the process of multipliying the two figures is illustrated in (24.4) and
(24.5). During the process simplifications as given below are used.

X—>‘ ‘ and %?—ﬂ

44.2. A key example. We will have more than one occasion to
refer to the following example.

We have put in a dotted line that runs through the common leaves
of the two forests and we have numbered the leaves from left to right
starting from 0. The positive forest corresponds to the word v3v,v5 in
the generators of . and the negative forest corresponds to the word
v2vs. We will switch to the more familiar generators x; of F' and say
that the element of F' given by (44.1) is g = 221 w625 "7y 2

To illustrate the subtlety of the length calculation we start with a
naive reduction of g to a word in the generators A = {aF! 2F'}. We
have

var g Pry gy (riwg 2oy d)
=iz 2y Ty (v wd)

2

.2 -5 5,.—2,.—1

_ .2 -5 3,.—1

which has length 13. However, a slight modification of the above gives

2. —5. 502 -2 2y-1
TT1xy T2y (5T “T1Xy)

o2 ol 4 4 (02 —2 2\l
=ror1ry Ty T1ryT1(xgTy ST T])

1

(44.2)

-2 4 2\—
=x, “r12yT1 (T125)
=2 A2 1

which has length 11. We will soon see why 11 is the shortest possible.
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44.3. Terminology. Let f be an abitrary element of F'.

For calculating || f||, we adopt the following conventions and ter-
minology. We always use an irreducible finite forest pair (&1, ®7) to
represent an f € F. We picture the pair as shown in (44.1) since we
want to refer to the leaves as shared by the two forests. A diagram as
in (44.1) of a forest pair will be denoted by A.

The positive forest will be referred to as ®* and the trees will be
indexed from left to right from 0 and the i-th tree will be referred to as
. Similarly we use ®~ and ®; for the negative forest and its trees.
The leaves are usually numbered from left to right from 0 and the i-th
leaf is denoted A;. The exception to this convention will occur when a
leaf is “split” by attaching the root of a caret to that leaf. Alternate
indexing will be introduced to avoid having to change the indices of
the other leaves after attaching the extra caret. Details will be given
when this is done.

Edges in the trees have directions, down-left and down-right in ®*
and up-left and up-right in . That is, edges always are directed from
node to child. A left leaf in a tree is the left child of its parent and a
right leaf in a tree is the right child of its parent. Thus a leaf can be a
left child in ®* and a right child in ®~. In (44.1), A; is an example of
this, while A3 is an example of the reverse. A leaf that is a trivial tree
in both ®* and ®~ is said to be doubly trivial. In (44.1), A5 is doubly
trivial.

We need a notion of companion leaves. Two leaves in a single tree
are companions if they are connected by a path in the tree with only
one change of direction. In (44.1), the companion pairs are {Ag, A2},
{)\0,)\3} in (I)S_, {)\67)\7} in (I);_, {)\0,)\1}, {)\0,)\2} in (I)a, and {)\3,)\4}
in ®;. We are actually only interested in companions of Ay and we use
[Ao] to denote the set of leaves consisting of A\¢ and its companions in
A.

We give some elementary observations. For this we need to discuss
relationships in one forest, so we pick ®*. But the observations apply
as well to &~

First if a left leaf is followed by a right leaf, then the two leaves are
the leaves of an exposed caret in the forest. The extreme left leaf of a
tree is a left leaf of the forest and the same is true with right replacing
left twice. Second, different trees cannot have overlapping leaves in the
ordering and in particular, all leaves between the extreme left leaf and
the extreme right leaf of a single tree are leaves of that tree. Third,
it is not possible for a leaf of a trivial tree to be immediately to the
right of a left leaf or immediately to the left of a right leaf. Fourth,
the extreme left leaf of a tree that is not @ is immediately preceeded
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by the extreme right leaf of another (possibly trivial) tree. A similar
statement can be built about the extreme right leaf of a suitable tree.

The last observation is about [A\g]. All contributions to [A¢] from
considerations of ® come from ®;. If we temporarily use T to denote
., then we can refer to the left subtree Ty and the right subtree T} of
T. The only contribution to [A\g] from T} is the extreme right leaf of T
All other contributions to [Ag] from T" come from Tp. Stated differently
if the caret at the root of ®F is removed to split ®; into two subtrees,
then the only loss to [A] is the rightmost leaf of ®F.

All comments in the previous two paragraphs apply to &~ after
mechanical changes.

44.4. The length formula. We now can define the first of the
two ingredients in the formula for an element of F'. We say that a leaf
A; is special if it satisfies both of the following.

(1) The leaf \; either doubly trivial, or is a left leaf in either &
or .
(2) The leaf A; is not Ag, and A;_; is not in [Ag].
We use #,A to denote the number of special leaves of A. The
second ingredient is #.A the number of carets in A. We define

(44.3) o(f) = 0(A) = #A +294A.

We will prove that ¢(f) = || f||. Before we do that, let us accept
the truth of the claim temporarily and look at ¢ in (44.1). The set [\
equals {A\g, A1, \oA3}. The only doubly trivial leaf is 5. Leaves that
are left leaves in either ® or ®~ are \g, A1, A\3 and \¢. However only
A5 and Ag are special. There are 7 carets in the diagram in (44.1) and
so p(g) =7+ 2-2 = 11. Assuming our claim, the calculation in (44.2)
gives as short as possible a word in A = {2g!, 27!} that represents g.

We can now state the following.

THEOREM 44.1. For f € F, the length ||f|| of f with respect to the
generating set A = {xF' 2} equals o(f) as given in (44.3).

The following lemma dictates the outline of the proof of Theorem
44.1.

LEMMA 44.2. Let G be a group with generating set S, and let { :
G — N be a function. Then for each g € G we will have (g) = ||g|| if
and only if all of the following hold.
(1) (g) =0 if and only if g = 1¢.
(2) For all g € G, we have [((gs) — ((g)| < 1.
(3) Forallg € G\{1g} thereis an s € S so that {(gs) = {(g) — 1.
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Proor. If (1) and (2) hold, and if w is a word in the generators of
length n, then a change of no more than n can occur from the value 0
of {(1¢) to the value of ¢(w). If this is applied to the shortest word in
the generators representing an element of G, then ¢(g) < ||g/|-

If (1) and (3) hold, take a g € G\ {1¢} and with ¢(g) = n, find a
sequence of n generators that successively multiplied on the right of ¢
strips the ¢ value to 0. The result is 14, so the inverse of the sequence
is a word of length n representing g. This gives £(g) > ||g]|-

This proves the “if” direction which is the one we actually need.
The converse is straightforward and left to the reader. 0

PROOF OF THEOREM 44.1. Let f bein F. If f # 1, then there is
at least one caret. This verifies (1) of Lemma 44.2.

To verify (2), we will show that |¢(fa) — ¢(f)| =1 for all f € F
and a € A. We look at the four cases for fa with a € A. Information
gathered in this argument will be applicable in the argument for (3).

In all cases, the number of carets will change by 1. It will suffice to
consider only those configurations where the number of carets increases
by 1 and show that the number of special leaves either stays the same or
decreases by 1. For if ga has one fewer caret than g, then g = (ga)a™!
has one more caret than ga and the analysis of the arrangements where
the number of carets increases will give us the desired outcome.

(a = xp): Since we assume that fa has one more caret than f, the
tree ®, must be trivial. This “splits” Ay into two leaves that we will
call A\gp and Ao to avoid changing the indices of the other leaves in
going from f to fa. The leaves Ao and g1 are not special and status
of all other leaves remains the same. So the number of special leaves
of fa is the same as that of f.

(a = x1): Now to have that fa has one more caret than f, ] must
be trivial. If w is the rightmost leaf of ®; and v = ); is immediately
to the right of u, then \; splits into A\;o and \;;. The leaf \;( is not
special because wu is in [Ag]. The leaf A;; is not special since it is a
right leaf in ®* and a trivial tree in ®~. The status of all other leaves
remains the same. Again the number of special leaves of fa is the same
as that of f.

(a = z5"): In this cae the trees ®; and ®] are joined even if they
are both trivial. Our assumption that the number of carets goes up
says that the new caret does not cancel an exposed caret of ®*. From
the observations at the end of Section 44.3, the only possible change to
[Ao] is the addition of the rightmost leaf v of ®7 . If the leaf immediately
to the right of v is special in f, it is not in fa. Otherwise there are no
other changes to the status of the leaves. This is the desired outcome.
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Note that the addition of a caret by multiplying by z;' results in
a decrease in the number of special leaves in only one very restricted
configuration. The rightmost leaf v of ®; must not be in [Ao] for f and
the leaf immediately to the right of v must be special in f.

(a = x7'): In this case the trees ®; and ®, are joined even if
they are both trivial, and we are assuming that the new caret does
not cancel an exposed caret of ®*. Let p and ¢ be the leftmost and
rightmost leaves, respectively, of ®;, and let r and s be the leftmost
and rightmost leaves, respectively, of 5. The equalities p = ¢ and/or
r = s are possible if depending on the triviality or non-triviality of &
and ®;. We must have ¢ # r because ®; # ®,. Whether any of p,
q, T or s are in [Ag] depends on the structure of ®* since none if these
leaves are in @ . Thus this aspect of these leaves is the same in f and
fa. The leaf immediately to the left of p is definitely in [A\o] in f, and
thus p cannot be special for f and for fa. The leaf ¢ is special in fa if
and only if it is special in f. If r # s, then each is special in fa if and
only if it is special in f. If r = s and is not special in f, then it is not
special in fa. If r = s is special in f because it is doubly trivial for f
and ¢ is not in [Ag], then it is not doubly trivial for fa, not a left leaf in
either forest, and thus not special for fa. No other leaf can change its
status from f to fa. So as in the case a = ', the number of special
leaves of fa is either the same as for f or it is fewer by 1.

As with the case a = z; ! there is a very restricted configuration
in which the addition of a caret by multiplying by z;' results in a
decrease in the number of special leaves. Here the leaf r» immediately
to the right of & must be doubly trivial (and thus not the last leaf of
A) and the rightmost leaf ¢ of ®; must not be in [Ag].

To verify (3), we want to lower ¢(f) by multiplying on the right by
a generator. From the argument for (2) we know that if we lower the
number of carets, then there are only two specific ways this can fail.
We keep this in mind when we consider how &~ can be configured.

Case 1: The tree ®; is not trivial. In this case the only configura-
tion in which multiplying on the right by z; fails to lower ¢(f) is the
following. Multiplying by z; on the right splits the non-trivial & into
®1 , on the left and ®7; on the right. The tree ®;; must be trivial and
its only leaf r must also be a trivial tree in ®* and not be the last leaf
in A. Also the rightmost leaf ¢ of ], must not be in [A\g]. It follows
that 7 is not in [Ag]. If ¢ is the leaf immediately to the right of r, then
it follows that ¢ is special for f no matter how it sits in the trees of ®*
and ®~. So in this configuration we can lower ¢(f) by multiplying by
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75" and unite the trees ®; and ®; putting r into [A\e] and making ¢
not special. Thus if ®] is not trivial, p(f) can always be lowered.

Case 2: The tree ®] is trivial and the tree ®; is not trivial. In
this case the only configuration in which multiplying on the right by
xo fails to lower (f) is the following. Multiplying on the right by z
splits the non-trivial ®; into @, on the left and ®,; on the right so
that the rightmost leaf v of ®;, is not in [\g] for fz;', and the leaf ¢
immediately to the right of v is not special in f but becomes special
in fry!. Since ®] is trivial, ¢ is its only leaf. For fz,* to have t be
special, t is either doubly trivial or a left leaf in ®*. So t is not in
[Ao] for f. There must be a leaf v immediately to the right of ¢ since ¢
becomes special for fz, L If u is a left leaf or trivial in ®*, then it is
special for f and will become non-special if we multiply f on the right
by z5' and join ¢, and the trivial ®;. This would lower ¢(f) so we
assume that u is not special. But this means w is trivial in &~ and a
right leaf in ®*. This means ¢t cannot be trivial in ®* and we have
already noted it cannot be a right leaf. So t is a left leaf, and ¢t and u
are the leaves of an exposed caret of ®*. With both ¢ and u trivial in
®~, we can cancel the exposed caret by multiplying f on the right by
27, From Part I, this must lower ¢(f). Thus if ®] is trivial and ®
is not, we can always lower ¢(f).

Case 3: Both ®; and ®; are trivial. If A\, is special for f, then )\;
is not in [\g] and multiplying on the right by z5* will put A; in [Aq]
and )\, will not be special for fry'. There are two ways Ay can be
not special for f. If A; is in [Ag], then Ay and A\; are the leaves of an
exposed caret in ®F, and since ®; and ®] are trivial, fzy' will have
fewer carets than f and from Part I will have o(fzg') < o(f). If A is
not in [Ao], then for Ay to be not special for f, it must be trivial in &~
and a right leaf in ®*. But now \; cannot be trivial in ®* and since
it is not in [Ag] it is not a right leaf in ®*. So it is a left leaf in ®* and
A1 and ), are the leaves of an exposed caret in ®*. Both leaves are in
trivial trees in @~ and so fz;' will have fewer carets than f and from
Part I will have o(fz;') < o(f).

This completes the proof of Theorem 44.1. O

45. Dead ends

If G is a group with generating set X, then the Cayley graph I' =
I'(G, X) might have dead ends.

DEFINITION 45.1. With G, X and I' as above, a vertex v of I with
|lv]] = n is a dead end of depth k if every edge path in T' from v to a
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vertex u with [|ul| > ||v|| includes a vertex w with ||w| = n — k. If
k > 1, then v can be referred to as a deep pocket.

Dead ends are discussed in Cleary-Taback 2004 [49] which also
proves that there are no deep pockets in F'. We will show that the
example of (44.1) is a dead end. The following pictures do the trick.

element diagram H#e F#Hs @
g = N 2 11
gry = e O 2 10
gry = ™ 6 2 10
gryt = N 81 10
grit= S 81 10

For gxy and gxy, the number of carets goes down and the number of
special leaves remains the same. For the remaining two, the number of
carets goes up and one of the special leaves A5 becomes non-special.

45.1. Remarks and an example. Dead ends are local maxima,
and the proof of Theorem 44.1 shows that the only local minimum is
the identity.

The proof of Theorem 44.1 gives an algorithm for computing from
an irreducible forest pair a minimal length word in A = {xg! o7
representing the same element. We give an example.

Let g = 222z, w3 o oy whose forest pair looks like the follow-

““““

We have ¢(g) = 10 because leaf 4 (second from the right) is special.
No other leaf is special.

In the following we reduce the ¢ value by one on each line by mul-
tiplying g on the right by a generator. We start with go = ¢ and
multiply go on the right successively by a sequence of generators to
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create a sequence of g; that end at the identity.

gi diagram #c #s 2

N N 8 1 10
go
g1 = GoTo LD 7 1 9
g2 = g1%1 /<\» .... 6 1 8
g3 = ozt Do 5 1 7
g1 = g3xy " 4 1 6
Js = g4 3 1 5
96 = g5Tg " 4 0 4
g7 = ge1 3 0 3
gs = grTo AN 2 00 2
go = gty ' N 1 0 1
1= goxy* oo 0 0 O

Thus
—2 1 —2\—1
g =(Tox17y “T1T5 T1TT] ")

_ 2, -1 -1 -1.2_ -1_-1

92 1 1.2 —1_—1
=TTy L1 TpTy Ty

:xg:pgxfxglxl_lxal
where the second line gives the expression of g as a word of length
10 in A = {23, 77} and the next two lines verify that this word
is equivalent to the original expression of g as a word in the infinite
generating set.

The point of the above example is to show two things. One is
that locating the special leaves can take some care. The other is that
the sequence of reductions can take some unexpected turns. This is
illustrated by the change that brings the ¢ value from 5 to 4 which
involves raising the number of carets to lower the number of special
leaves. Note that keeping the initial leaf in the change of ¢ value from
7 to 6 is important to keep the subscripts of the generators accurate.
It should be noted that the reductions 8 —+ 7 and 7 — 6, each accom-
plished by multiplying on the right by 2, are justified by noting that

: R N S R S
the expansion of z3 " in A = {zf a7 } is as x5~ = x5 x| .
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46. End notes

The existence of an algorithm to compute the word length in F' was
first shown in Fordham’s 1995 thesis [71] and was published in [72] in
2003. Our presentation is Fordham’s algorithm as modified by Guba
2004 [97], and Belk-Brown 2005 [9].

Geometric observations can be made about F without a precise
calculation of the word metric. Section 2 of Burillo 1999 [38] gives an
estimate for the word metric which bounded above and below from
a computation from the normal form. Interestingly, the argument is
based on data extracted from the graph of the element as an element
of PL,(I). Applications are given in [38].

The length formula we derive in Section 44.4 is from [97]. The
setting there is that of semigroup diagrams which are essentially dual
to forest pairs. The basic building block is a 2-cell whose boundary is
divided into three intervals, either one on top and two on the bottom,
or two on top and one on the bottom. The first is dual to a caret in
the positive forest, and the second is dual to a caret in the negative

forest as shown below.

The definitions leading to the length formula (44.3), and the proof we
give of Theorem 44.1 are bascially translations from semigroup dia-

grams to forest pairs of the material leading to and the proof of Theo-
rem 4 of [97].
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47. Appendix A: Confluence, distinguished representatives,
and Newman’s lemma

The motivating concept here is that of an equivalence relation ~ on
a set X and a method of improving elements in each equivalence class
so that each class contains a unique “maximally improved” element
that can be taken to be the distinguished representative of that class.
The model for this is a binary relation — on X that generates ~ in
which x — y is interpreted as “y is an improvement of x.”

There is a sequence of three results each having weaker hypotheses
than the previous that guarantees the existence of the distinguished
element. The most general of the three is known as Newman’s lemma

279
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[161]. The fact that sometimes one of the less general results applies
to a situation tends not to be of significance, and we will always just
say that we are applying Newman’s lemma.

An assumption common to all is that the relation — on X is termi-
nating, or Notherian, or well founded, meaning that no infinite sequence
(x;), 1 € N, exists so that for all i € N, we have x; — x;,1. In particu-
lar, for all x € X, x — x is false, and — is “maximally non-reflexive.”

To discuss the remaining assumptions, let 2 be the transitive clo-
sure of —, let = be the reflexive closure of —, and let = be the reflexive
and transitive closure of —. As usual, turning a symbol around repre-
sents the inverse relation, so x < y holds if and only if y — x holds,
and similiarly for the various closures.

In the following we will write <—— implies —<— to mean that if there
are x, y and z with x <— y — 2, then there is a w with x — w < 2z and
similarly for the various closures. The three items in Definition 47.1
below give the hypotheses of the three results.

DEFINITION 47.1. With — a binary relation on a set X, we define
the following.

(1) We say that — is confluent if x ~ y implies that there exists
z with z 5 2 & .

(2) We say that — satisfies the diamond condition if <—— implies
SE.

(3) We say that — is locally confluent if +— implies —><-.

To appreciate the difference between local confluence and the dia-
mond condition, the reader can try to apply the argument in the proof
of Lemma 47.2 below that assumes the diamond condition but while
assuming local confluence instead. The usual picture below of the dia-
mond condition gives rise to its name.

w
ro_ _ ¥
z
We roll the three reuslts into one and obtain the combined result
as a corrolary of the following lemma. We will refer to the lemma and

its corollary together as “Newman’s lemma.” We say that z € S C X
is irreducible in S if there is no y € S with x — .

LEMMA 47.2. Let — be a binary relation on a set X that generates
the equivalence relation ~. If — is terminating, then every non-empty
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S C X has an element irreducible in S. If — is confluent, then each
equivalence class contains no more than one irreducible. If — satisfies
the diamond condition, then it is also confluent. If — is terminating
and locally confluent, then it is confluent.

PRrROOF. If — is terminating and S C X is not empty, then —g,
the restriction of — to S is a terminating relation on S. So assuming
xr € S = X suffices. If X has no irreducible element, then every
sequence r = xg — 1 — --- — I} can be extended to have one more
entry and a violation of terminating is shown to exist.

If — is confluent, and = and y are two irreducibles in an equivalence
class S, then there is a z € S with = z < y. But the irreducibility
of x and y implies x = z = y.

If — satisfies the diamond condition and x ~ y, then there is a
sequence (z; | 0 < ¢ <n)in X with x = zg, y = z,, and where for each
0 <i < n, one of x; — x;41 or x; < x;+1 holds. There are two ways
to deliver the standard argument. The “graph paper” argument plots
the progress from z to y on graph paper with < written vertically and
— written horizontally. From our assumption,

Tif1 == T2 Tit2
j can be replaced by l=
T; Ty —= Tiq1

repeatedly until all arrows written horizontally come before all arrows
written vertically. The “complexity” argument points out that the
cardinality of the finite set

{(1,7) |0<i<j<mn, x; 4 x4 and z; = Tj11}

goes down each time an instance of «+—— implies —<— is used.

As preparation for the last argument, we note that the proof as-
suming the diamond condition can be adapted with minimal change to
show that if <~ always implies —><—, then — is confluent.

We now assume local confluence and terminating. The proof will
be an example of Notherian induction. Specifically if P is a predicate
on elements of X with one free variable and if for all z € X we have
that P(z) holds whenever P(y) holds for every y for which z < y, then
P(z) holds for every x € X. For if not, then S = {x | =P(z)} is not
empty and contains an element x irreducible in S. But then P(y) holds

for every y € X with x 5 y, and our assumption on P then implies
P(z) holds.
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Let P(x) be the statement that for all y and z with y < 2 = 2
there is a w with 5 — w < 2z and assume an x for which P(y) holds
for every y with x 5 y. Now if y < = 5 2, then such a w exists
if either y = x or z = x. So we assume there are y, and zy so that
Y < Yo = — 2y — 2. The rest of the argument refers to the following

diagram where we have to justify the existence of all entries not yet
mentioned.

/\Z

y/ \w/ \Z
NN v

wr L W2
N
w
The element wq exists because of the assumption of local confluence.

The elements wy, wsy, and w exist because, respectively, P(yg), P(z0),
and P(wy) all hold by our assumptions about x. O

COROLLARY 47.2.1. If a terminating binary relation — on a set X
1s confluent, or satsifies the diamond condition, or is locally confluent,
then every equivalence class under ~ contains a unique irreducible el-
ement. Further given an element in an equivalence class, a chain of
random applications of — starting with the given element must ulti-
mately lead to the unique irreducible element of the class.

PROOF. The assumption that — is terminating implies that given
any x in an equivalence class S, a random chain of applications of —
starting at = must ultimately end in an element that is irreducible in
S. Uniqueness of the irreducible follows from Lemma 47.2. O

48. Appendix B: Simplicial and cubical complexes

We give a quick review of those parts of simplicial and cubical
complexes that we need. Almost all statements are easy exercises, and
we give references for some that are not.

48.1. Simplices. For convenience, we work in R>, the vector
space of infinite sequences of real numbers. In R*>, the point ¢;, 1 € N,
has all coordinates 0, except the i-th which has the value 1.

Given p # ¢ in R*, the line segment [p, q] from p to ¢ is the set
{tgq+ (1 —1t)p |t € [0,1]}. The points p and ¢ are the endpoints of [p, q|
and the rest of the points in [p, q] are interior points.
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A set S C R* is conver if for all p and ¢ in S, the line segment
[p,q] is in S. The empty set is convex. The intersection of a collection
of convex sets in R™ is convex. Given a set A C R, the convex hull of
A is the smallest convex set in R*> containing A and is the intersection
of all convex sets in R*™ that contain A.

If V= {vp,v1,...,v,} is a set of (n 4+ 1) points in R, then V is
affinely independent if n = 0 or if the n-tuple (v; —vg, va—2y, . . . , Uy —1p)
is linearly independent. Affine independence does not depend on which
element is taken as vy. Affine independence is inherited by subsets. In
R, any set of the e; is affinely independent.

If V is an affinely independent set of (n + 1) points in R*, then
the n-simpler o (which we also denote [V]) with vertex set V' is the
convex hull of V', and is referred to as the simplex spanned by V. The
dimension of o is n. If n = 0, the simplex is a single point. The
standard n-simplex A, is the convex hull of {eg,ey,...,e,} in R™.
The standard n-simplex is the set

An:{(ao,---,an)’Z@i:1704i2070§i§n}

i=0
n n
:{Zaiei\Zaizl,aizo,ogign}.
i=0 i=0

The vertices of an n-simplex are determined by the simplex in that
they are the only points in the simplex in the interior of no segment
in the simplex. If ¢ is an n-simplex spanned by V' = {vy,...,v,} and
f:{eo,...,en} — V is such than f(e;) = v;, then an extension of f to
A,, defined by

/ (Z aiei> = Z aif(ei) = Z QU4
i=0 i=0 i=0

is a homeomorphism from A, onto ¢ that takes vertices to vertices.
Thus every € o has a unique expression as z = > o;v; with each
a; non-negative and Y «a; = 1. The «; for which this holds are the
barycentric coordinates for that x € o, and each «; is the barycentric
coordinate of x at v;.

If 7 is an m-simplex spanned by W = {wq, ..., w,, },and g : V — W
is any function, then g extends to the simplicial map g : ¢ — 7 defined
by

9 <Z Oéwi) = Z aig(vi) = Z QW;
i=0 i=0 i=0
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where the «; are the barycentric coordinates of the elements of o. The
extension is surjective if and only if g : V' — W is surjective, and the
extension is injective if and only if g : V' — W is injective.

If o is an n-simplex spanned by V and W C V has m points, then
the m-simplex 7 spanned by W is an m-dimensional face of o and also
an (n—m)-codimensional face of o. If m < n, then 7 is a proper face of
o. lf now Z =V \ W, and p is the ((m —n) — 1)-dimensional face of o
spanned by Z, then 7 and p are opposite faces of 0. With Z defined this
way, the points in 7 are those points in o whose barycentric coordinates
at the elements of Z are zero. The interior of a simplex is defined as
the complement of the union of its proper faces.

Two disjoint subsets A and B of R*™ are joinable if the set of line
segments [A, B] = {[p,q] | (p,q) € A x B} has the following property:
every two segments in [A, B] are either disjoint, or equal, or have their
only point of intersection an endpoint of both segments. If subsets A
and B are joinable then the join A x B of A and B is the union

Ax B := U a, b].

(a,b)eAxB

The join of two convex sets is convex. In the special case that A and B
are joinable and B is the singleton {v}, then we write A*v for Ax{v}
and refer to A x v as the cone over A with cone point v. The point
v is a strong deformation retraction of A * v and so the cone over A
is always contractible. Two opposite faces 7 and p of a simplex ¢ are
always joinable and o0 = 7 % p. In this case, the sum of the dimensions
of 7 and p is one less than the dimension of ¢. If 7 has codimension 1,
and v is the vertex of o not in 7, then ¢ = 7 x v.

REMARK 48.1. The structure given to a simplex as a join is impor-
tant. If 7 and p are opposite faces of the simplex o, then sending points
(bye,t)inTx px(0,1) to (1 —t)b+tcin 7 p = o is a homeomorphism
to o\ (TUp). If 0 is a face of o that has non-empty intersection with
both 7 and p, then [0N7] and [0Np]| are opposite faces of 6. If i : § — o,
j:[dN7] = 7and k: [0 N p] — p are the natural inclusions, then the
following commutes,

507 % 5 p] x (0,1) —= 7 % p x (0,1)
(48.1) l l
S\ (en7luldnp]) ———=0o\(TUp)

where the horizontal arrows are built from ¢, j and k and the vertical
arrows are restrictions as needed of (b, ¢, t) — (1 — )b + tc.
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48.2. Simplicial complexes. A simplicial complezis a pair (X, )
where X is a topological space and X is a set of simplices in X so that
X is the union of the simplices in ¥, the topology on X is generated
by ¥ in that U C X is open in X if for all 0 € ¥, U N ¢ is open in o,
each face of each simplex in > must be in 3, and the intersection of any
two simplices in X is empty or a face of each. Notation is frequently
abused, and the complex is referred to by X if the set of simplexes X
is understood. The space X is the underlying space of the simplicial
complex, and the full complex (X, ) is often referred to as a triangu-
lation of X. Every x € X is in the interior of a unique simplex in 3.
This will be commented on in Section 48.3.

If (X1,%;) and (X3, X5) are simplicial complexes then f: X; — X5
is simplicial if for each o1 € ¥ there is a simplex oy € ¥ so that f|,,
agrees with some simplicial map from o7 to 5. A simplicial map of
complexes is continuous.

If (X,X) is a simplicial complex, then a subcomplex of (X,X) is a
simplicial complex (Y, I") where I" is a subset of X. If the vertex set of
(X,X)is V,and V' C V| then the subcomplex (Y, T") of (X, X) spanned
by V' has I' consist of those simplices in ¥ whose vertices are in V' and
Y the union of the simplices in T'.

48.3. Abstract simplicial complexes. Simplices are determined
by their vertices, so the structure of a simplicial complex is determined
the set of vertices once it is known which vertices belong to a simplex.
Based on this an abstract simplicial complex is defined as a pair (V,5)
where V' is a set and S is a collection of finite, non-empty subsets of
V' subject to the requirement that V' is the union of the elements of .S
and S is closed under passing to non-empty subsets. The vertices of
a simplicial complex together with the subsets that are vertices of the
simplices in the complex form an abstract simplicial complex.

If (V,S) is an abstract simplicial complex with V' countable (the
only situation we will need), then we can identify V' with a set of the
e; in R* and take X to be the set of simplexes that are spanned by
the subsets in S. Now the union of these simplexes in Y. is a subspace
X of R*™ (using, say, the uniform metric) that is a candidate for the
underlying space of a simplicial complex whose corresponding abstract
simplicial complex is (V,.5).

However if the simplices are not locally finite, then the topology on
X as a subspace of R* might not be the topology determined by the
simplices in Y. This is not a problem since we will be interested only
in homotopy invariant properties of the complexes, and the main re-
sult of [61] says that the identity map on X is a homotopy equivalence
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between the two topologies. Therefore we accept (X, X) as the topo-
logical realization of (V,.S). This varies from the usual definition of the
topological realization, but not in an essential way. One way to look
at the topological realization is to identify the points in the realization
with those functions from V' to [0, 1] having the following restrictions.
Given a function a: V' — [0, 1], we write «, for its value at v € V| we
call {v € V| o, > 0} the support of «, we require that the support of
a be finite, and we require that ) ., a, = 1. To put a in R> with
our view of V' as a set of the e;, we identify o with z = _,, a,v. The
o, are the barycentric coordinates of x. The unique simplex that has x
in its interior is the simplex spanned by the support of a.

If (V4,51) and (V3,Ss) are two abstract simplicial complexes and
f Vi = Vs is a function, then we say that f is simplicial if for every
s € S; we have f(s) € Sy. Such a function induces a simplicial map
between the topological realizations.

If (V,S) is an abstract simplicial complex, then |(V,.S)| will denote
its topological realization. Topological properties of |(V,S)| will be
referred to as properties of (V,9).

48.4. Posets and complexes. Abstract simplicial complexes can
be derived from partially ordered sets. A partially ordered set (or poset)
(P, <) is a set P with a binary relation < that is reflexive, transitive
and anti-symmetric in that z < y and y < z implies + = y. The partial
order is a total order if for every x and y in P either x < yory < z. We
write x < y to mean x < y and x # y. A function f between posets is
order preserving if for every x < y in the domain we have f(z) < f(y)
in the range. A chain in a poset (P, <) is a subset C' C P that is a total
order under the restriction of < to C. We will use interval notation
such as [z,z]| ={y e Pla <y <z}, [r,2) ={ye P|lz<y<z}
and so forth.

If P is a poset, then the set of finite, non-empty chains in P forms
an abstract simplicial complex that we will also refer to by P. Careful
wording will avoid confusion. If f : P — (@ is an order preserving
function between two posets, then it is also a simplicial map of the
associated simplicial complexes.

We will use | P| to denote the topological realization of the complex
of finite chains in P, and properties of the resulting topological space
then become properties of interest. Let P and () be two posets and f
and g be two order preserving functions from P to Q. If for all z € P,
we have f(x) < g(z), then f and g induce homotopic maps on the
topological realizations. To discuss this, we model |P| x I.
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More generally if P and () are two posets, then the product poset
structure on P x @ is defined to have (p1,q1) < (p2,q2) if p1 < po
and ¢; < g both hold. Lemma 8.9 of [68, Ch. 2] says |P x Q| is
homeomorphic to |P| x |Q)].

Now we take @ = {0,1} with 0 < 1s0 |Q|=1. If 0 = {vg < v, <

-+« < v,} is an n-simplex in P, then each
(482) 0; = {(Uo,O) << (UZ',()) < (Ui7 1) < (Ui+1, ].) < - (Un, ].)}

is a simplex in P x {0, 1} and every simplex of P x @ is of the form
in (48.2) or a face thereof. Now the assumption that f(z) < g(z) for
all x € P guarantees that if we take P x {0} to @ by f and P x {1}
to @ by g, then the map on P x {0, 1} is simplicial and extends to a
continuous simplicial map.

If P contains a greatest element v, then the function g : P — {v}
has z < g(x) for all x € P, and the identity on |P| is homotopic to the
constant map to v, making P contractible. In fact P is the cone over
{w € P | w < v}| with cone point v.

48.5. Barycentric subdivision. If ¢ is a simplex with emphasis
on its status as a topological space, and X is the collection of simplices
consisting of o and all of its faces, then (o, ¥) is a simplicial complex

with o as underlying space. If ¢ is spanned by V = {vg, vy, ..., v,]},
then

1

0= ZZ:; v;

is the barycenter of o.
Let F' be the poset of faces of ¢ under containment. If iy C 74 C
- C T is a chain of faces then {7,..., 7%} is affinely independent
and spans a k-simplex [To, ..., 7Tg]. The collection of all such simplexes
is the barycentric subdivision of o, often denoted Sdo or ¢’. The
barycentric subdivision of a simplicial complex K is the set of simplices
in the barycentric subdivisions of all the simplices in K. If K’ is the
barycentric subdivision of K, then from Lemma 6.2 of [68, Ch. 2], the
underlying topological spaces of K and K’ are the same.

If (P,<) is a poset and K the abstract simplicial complex of fi-
nite chains under < of elements of P, then the abstract barycentric
subdivision K’ of K is made of chains of chains. Specifically, K’ con-
sists of finite, non-empty chains ordered under containment, of finite,
non-empty chains ordered under < of elements of P. Since the topo-
logical realizations of K and K’ are homeomorphic, their topological
invariants are the same.
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48.6. Covering maps and covering spaces. If (V,S) is an ab-
stract simplicial comples, and a group G acts on V' (on the right, say)
by simplicial maps, then we will say that the action is stmplicial. If this
action is free, then no point is fixed by any 1 # ¢g € G. In particular
no barycenter of any simplex in X is fixed by any 1 # g € G, and it
follows that for any ¢ € S and any 1 # g € G, we have og # 0.

Assume that an action as above is free, that X is connected, that
x=a:V —[0,1] is a point in X, and that o € S is the unique simplex
that contains x in the interior of its span (i.e., o is the support of ).
Let € be less than {1 min{a, | v € o}, and let g # 1 be in G. Then
the support of zg includes a v € V' \ o whose barycentric coordinate
on v is greater than €, and so the distance between x and zg is greater
than e. Thus every point x € X has an open neighborhood U so that
forall 1 # g € G, UNUg = 0. From Proposition 1.40 of [104], we
have that the map p : X — X/G with p(z) = G is a regular (or
normal) covering map, G is the group of covering transformations (or
deck transformations) of p, and G is isomorphic to 7 (X/G) /p«(m1(X)).

48.7. Stars, links and cones. If (X,¥) is a simplicial complex
and v is a vertex in Y, then the star of v in the complex is the set of
simplices that have v as a vertex together with their faces. Note that
the set of simplices having v as a vertex is not closed under passing to
proper faces if this set contains anything more than just v.

The link of v in the complex is the set of simplices in the star of v
that do not have v as a vertex. If the star of v contains only v, then
the link of v is empty. For each simplex ¢ having v as a vertex with 7
the face of o opposite to v, the link of v in ¢ is 7 and all the faces of 7.
It is thus legitimate to refer to the star of v as the cone over the link
of v with cone point v. This holds even if the link of v is empty if we
declare that () x v = {v}. Stars of vertices are contractible. If St(v) is
the star of v, and Lk(v) is the link of v in a simplicial complex, then
St(v) \ {v} has the structure of Lk(v) x [0,1), and Lk(v) is a strong
deformation retract of St(v) \ {v}.

At times a simplicial complex is built from another complex by
adding cones. If L,, a € A, is a family of subcomplexes of (X, o)
and v,, a € A are vertices where UL,, a € A, and {v, | o € A} are
joinable, then the result of coning off all the L, is the complex

XU ULa*va

acA
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where the simplices in the resulting complex are those of X, together
with all o % {v}, and {v} itself. Note that for @ # § in A, we have
(Lo *vo) N (Lg*vg) = Ly N Lg.

48.8. Simple Morse theory. The following is simplified from
[11].

If X is a simplicial complex spanned by V', then a function f :
V — R is a Morse function if its image is closed and discrete, and no
1-simplex has f the same on both of its vertices. Equivalently, f is a
Morse function if no two vertices in an n-simplex have the same value
under f. Our Morse functions will have image in the integers.

We will filter X by subcomplexes X; where X; is spanned by {v €
V| f(v) <i}. We investigate how X; changes as ¢ increases.

We assume a Morse function f on the vertices of X that takes values
only in the integers. Because f is a Morse function, a simplex ¢ in X
that is not a simplex of X;_; has a unique vertex v, with f(v) =i, and
the addition of o to X;_; is the addition of the cone at v, over the face
of o opposite to v,. Thus for v with f(v) = 4, the set of simplices in
X; with vertex v forms the cone over the link of v in X;. For v with
f(v) =i, we let Lk (v, X) denote the link of v in X; and refer to it as
the descending link in X. We have arrived at our main tool.

LEMMA 48.2. Let X be a simplicial complex spanned by V and let
f:V —Z be a Morse function. If X; is the subcomplex of X spanned
by {ve V| f(v) <i}, then X; is obtained from X;_1 by coning off all
the Lk (v, X) for each v with f(v) = 1.

48.9. Cubical complexes. Cubical complexes arise naturally, and
cubical complexes can be realized as simplicial complexes.

The poset {0 < 1} has [{0 < 1}| = I which is also the 1-dimensional
cube. Thus {0 < 1}" with the product poset structure from Section
48.4 will be our model for the n-cube. Elements of {0 < 1}" are
sequences on n = {0,...,n — 1} with values in {0,1}, and two such
sequences f and g have f < g if f; < g; for all i« € n. Any poset
isomorphic to {0 < 1}" with this order will be an n-cube. In particular,
the set of subsets of a set of n elements, ordered under inclusion, has
the structure of an n-cube.

The smallest element of {0 < 1} is the sequence 0 all of whose
values are 0, and the largest element is 1 all of whose values are 1.
A maximal chain in {0 < 1}" has n + 1 sequences and is determined
by a permutation of the indices giving the locations, in order, where
the value changes from 0 to 1. There are thus n! maximal chains in
{0 < 1}"™ and n! simplices of dimension n in our model of the n-cube.
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A face of C = {0 < 1}" will be a closed interval [m,M] with
m < M in C. Let D be the set on which m and M agree, and let
d the restriction of m or M to D. Let E be the complement of D in
n={0,...,n—1} and let k£ = |E|. Now f in C is in [m, M] if and
only if f agrees with d on D. So [m, M] is isomorphic as a poset to
the set of functions {0 < 1}¥ with E totally ordered as a subset of
n=4{0,...,n—1}. Thus [m, M] is a k-cube. We also arrive at a face
of C' by choosing some D C n and some d : D — {0 < 1}. With E the
complement of D in n, with m equal to d on D and 0 on F, and with
M equal to d on D and 1 on E, we recover the face [m, M| as those
elements in C' agreeing with d on D. The face is proper if D # ().

A cubical complex for us will always arive as a structure that can
be imposed on a simplicial complex that is derived from a poset. So we
define a cubical complex to be a poset (P, <) and a set K of subsets of P
called cubes whose union is P, so that each C' € K has the structure of
a cube in the poset structure, and so that the intersection two elements
of K is empty or a face (as a cube) of each. Note that every 1-cube is a
1-simplex, but in a cubical complex as just given, not every 1-simplex
will be a 1-cube. For example {(0,0),(1,1)} is a 1-simplex in {0 < 1}?
but not a 1-cube. Two vertices in a cubical complex are adjacent if
they are the endpoints of a 1-cube.

If v is a vertex in a cubical complex (P, K') as above, then the link of
v with respect to the cubical structure is the abstract simplicial complex
(not a cubical complex) whose vertices are the vertices adjacent to v
in the cubical complex, and where a collection of these vertices forms
a simplex if they lie in a single cube. The link of a vertex of a single
3-dimensional cube is a 2-simplex and all of its faces.

The link of a cubical complex and the link of the corresponding sim-
plicial complex are topologically the same. This is because a cube and
its corresponding simplicial complex have the same underlying space.
We sketch the details.

With I = [0,1], let I™ model the n-cube. Let n = {0,...,n — 1}
index the coordinates and let x = (z;) be an n-tuple in I™. There
is a permutation 7 on n so that zrq) < rq) < -+ < Xpu—1). Let
Qo = Tr(0), let Qi1 = Tr(iy1) — Tr(s), and let o, = 1 —27(,—1). We have
> o @ = 1. Recursively, let vy = 1, the tuple with all values equal to
1, and let vy = v; — ex(;). That is we successively change each 1 to 0
in vy in the order given by 7 so that v, = 0. The 7(j)-th component
of Y 5 a;v; is Zf) i = Tp(j). S0 Y gv; = x and X in the simplex
spanned by the v;. Thus I™ is contained in the union of the n! different
possible simplices, and the reverse containment follows because I™ is
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convex. That two simplices intersect in a face of each follows because
the intersection of two chains is a subchain of each.

48.10. Curvature and cubical complexes. A property of the
link in a cubical complex has a central role in this next topic. A
simplicial complex is flag or a flag complex if a subset S of the vertices
are the vertices of a simplex if and only if every pair of elements in S
are the vertices of a 1-simplex. For example the link of a vertex of a
3-cube is a flag complex, but the link of a vertex in a cubical complex
consisting of the proper faces of a 3-cube is not.

We need two results about CAT(0) spaces, but we omit details of
the definition. See Chapter II of [26] for definitions. We can also use
Theorem 48.3 below as a definition. To give some idea of the concept,
Definition 1.2 of Chapter II of [26] mentions that for a real x, a metric
space has curvature no greater than « if it is locally a CAT (k) space.

The following is Theorem B.8 of [135].

THEOREM 48.3. A simply connected cubical complex is CAT(0) if
and only if its vertex links are flag complexes.

The following is Corollary 1.5 of Chapter II in [26].
THEOREM 48.4. For k < 0, any CAT(k) space is contractible.

49. Appendix C: Ultrafilters

The bit of material we need on ultrafilters might be slightly less than
standard. There are also many references that discuss ultrafilters with
various differences of terminology. However, there is a commonality
of concept which we do not depart from. Among many others [62,
pp. X.2-X1.1], [75, pp. V.1-V.5], and [77, pp. 6.7-6.8] are possible
references.

If P is a poset under < with a minimum element 0, then a filterbase
F on P is a subset of P\ {0} that is directed downward in that for all
p and ¢ in F, there is an » € F with » < p and r < ¢. That is, every
pair of elements in F has a lower bound in F.

A filterbase F that is upwardly closed (p < ¢ in P and p € F
implies ¢ € F), is a filter. Clearly, the filter generated by a filterbase
Fistheset {pe P|3qeF, q<p}

If 7 and G are filterbases on P, then we say that G is subordinate
to F if for every p € F there is a ¢ € G so that ¢ < p. That is,
a representative of G can be slipped below every representative of F.
Every filter is a filterbase, so the term applies to filters as well. Note
that for filters, G subordinate to F and the upwardly closed requirement
puts every element of F in G and we get F C G. The converse is trivial



292 9. APPENDIX

since p < p for all p € F. So for filters, G is subordinate to F if and
only if F C G.

A mazimal filterbase is a filterbase M so that any filterbase F sub-
ordinate to M has M subordinate to F. A maximal filter is called an
ultrafilter. Note that if M is an ultrafilter and F is a filter subordinate
to M, then F = M. A standard Zorn’s lemma argument shows that
every filter is contained in an ultrafilter.

An example of a filter is a principal filter which takes the form
{g € P | p < ¢} given some specific p € P. If p is not minimal
in P\ {0}, then this filter is not an ultrafilter. However, in another
setting what is usually called principal is an ultrafilter.

Let (X, T') be a topological space with basis B (regular or ordinary)
for the topology T'. Examples of a useful poset P ordered by inclusion
could be

(1) P is the set of all subsets of X,

(2) P is the topology T,

(3) P is the basis B.
In all of these, given p € X the set {A € P | p € A} is an ultrafilter
on P called the principal ultrafilter at p. Note that in (2) and (3) an
ultrafilter on P is a filter on X but in general is not an ultrafilter on
X and does not generate an ultrafilter on X. It is standard that if F
is an ultrafilter on the set of all subsets of X, then for any ) # A C X,
either Aor X \ Aisin F. In (2) and (3) the filter on X generated by
an ultrafilter on P will consist only of sets with non-empty interior. In
general, a topological space X will have many sets A where neither A
nor X \ A have non-empty interior.

50. Appendix D: Some elementary number theory

50.1. The absolute basics. See the first chapter of any book on
elementary number theory.

We assume familiarity with the consequence of the Euclidean al-
gorithm that for integers a and b not both zero, ged(a,b) equals the
least positive linear sum with integer coefficients of a and b. We also
assume the unique prime factorization of integers which we put in the
following form for non-negative integers. For an integer a > 0, the
prime characteristic function y, of a is the function from the primes to
the non-negative integers giving the powers of the primes in the prime
factorization of a. This is almost a logarithm.

The support of x, (those p with x,(p) # 0) is bounded. Taking all
operations coordinate by coordinate, xo + X» = Xabs Xa < Xp IS €quiv-
alent to alb, with ¢ = ged(a,b), x, = inf(xa, Xxp), With [ = lem(a, b),
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X1 = sup(Xa, X»), disjoint supports corresponds to relatively prime, and
all this makes it clear that gl = ab.

50.2. The group of units modulo s.

LEMMA 50.1. For a positive integer s, the set of integers modulo
s that are prime to s, is exatly the set of units in Z/sZ and this set
forms a group under multiplication modulo s.

ProorF. If ged(a, s) = 1, then az + sy = 1 has solutions, and x is
an inverse to a modulo s. The converse reverses the argument.

The set of units in a ring always forms a group, but in this case it is
fun to note that if az + sy = 1 = bz + sw, then (az + sy)(bz + sw) =1
and the left side has one term involving ab and the other three terms
are multiples of s. O

50.3. The Chinese remainder theorem.

PROPOSITION 50.2. Let s;, 1 < i < n, be pairwise relatively prime
with S = [[i—, si. Then there is a simultaneous integer solution x to
the n equations x = a; (mod s;) and the set of such solutions is x+SZ.

Proor. We start by proving the following claim which is a reword-
ing of the proposition for the case n = 2.

CLAIM 2. For integers a,b, c,d with ¢ and d relatively prime, there
is an integer x so that (a + cZ) N (b+dZ) = x + (cd)Z.

We have ¢ZNdZ = (cd)Z since cd is the least common multiple of ¢
and d. There are integer solutions to xc —yd = 1, and in fact for every
k there are solutions to zc—yd = k. So there is some ¢ in ¢ZN(b+dZ).
Shifing both ¢Z and b 4+ dZ down by ¢ brings the two sequences back
to ¢Z and dZ again, so ¢Z N (b + dZ) = (q + (cd)Z). This says that
every integer shift between ¢Z and dZ is of the form (z + (¢d)Z) and
the claim follows.

Now we inductively assume that the solution set to the first n — 1
equations of the proposition is of the form 2’ +S5’'Z where S' = H?;ll S;.
By the claim, (¢'+S"Z)N(a,+5,Z) is of the form (x+S5"s,Z) = (x+SZ)
for some z. O

50.4. On solutions of modular equations. The following ap-
pears in Section 38.8 as Lemma 38.28. We use the usual notation (a, b)
for ged(a, b).

LeEmMMA 50.3. (I) If alm and for some x, we have ax = r (mod m),
then alr.

(II) The equation kx = r (mod m) has exactly (k,m) solutions
modulo m if (k,m)|r.



294 9. APPENDIX

ProoF. (I) With m = aq and axz — r = pm = pqga, we have r =
a(z — pq).

(IT) We have k = (k,m)a, m = (k,m)b and r = (k,m)c. If kx =r
(mod m), then kx — r = mp for some p or

(k:,m)ax - (k7m)c = (k’m)bpu
ax —c = bp,
ar =c (mod b).

Now (a,b) = 1 so ap + bg = 1 for some p and gq. There are b
problems like ax = ¢ (mod b) as ¢ varies over the residues modulo b,
and each has a solution (ap + bg)c = ¢ or apc = ¢ (mod b) among the
residues modulo b. So there is a unique solution for each problem. The
x solving ax = ¢ (mod b) solves kx = r (mod m).

If ky = r (mod m), then ay = ¢ (mod b). So a(x —y) =0 (mod b)
and z—y = 0 (mod b) by the uniqueness just shown. So z—y = jb and
there are exactly (k,m) multiples of b = m/(k, m) that are different
residues modulo m. U

The following is used in Section 41. I learned its proof from Alexan-
der Borisov.

LEMMA 50.4. Let a,b, s be integers with both a and b not zero and
with g = ged(a, s) = ged(b,s). Then some integer x prime to s is a
solution to ax = b (mod s).

PROOF. If ¢ = 1, then a and b are in the group of units of Z/sZ
and this group of units then contains the x required.

Ifg>1,thend =a/g,t/ =b/gand s = s/g are pairwise relatively
prime and there is an 2’ prime to ¢’ with ¢’z =V (mod §'). So ax’ =
(mod s), but we don’t know 2’ is prime to s. However any = € 2’ + s'Z
will have 'z = b’ (mod s') and az = b (mod s). Let A be those primes
that divide s but not s’ and let B be those primes that divide s’. The
set of primes that divide s is the disjoint union of A and B.

By the Chinese remainder theorem, there is an x equivalent to z’
modulo s" and equivalent to 1 modulo each prime in A. No prime in
B can divide x since such a prime divides s’ which is prime to z’. This
x is a solution as required. O

Note that Dirichlet’s theorem that every arithmetic sequence con-
tains infinitely many primes can be used in the proof of Lemma 50.4,
but the lemma is much more elementary than that.
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